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We thank God for allowing us to be alive and healthy and for allowing us to have the
proper resourcefulness to transfer our knowledge and experiences to readers of
this work.

vii



Presentation

Metrology is strategic for a nation’s development and fundamental for organiza-
tions’ technological and commercial growth. The specialist professional involved
daily in measurement activities must know the mathematical foundations, statistical
tools, techniques, practices, and operating procedures.

The International Vocabulary of Metrology—Basic and General Concepts and
Associated Terms (VIM) [2] defines Metrology as the “science of measurements and
its applications.” The VIM complements this definition with a note: “Metrology
includes all theoretical and practical aspects of measurements, whatever the mea-
surement uncertainty and field of application.”

Analyzing the definition, we need theoretical knowledge about the concepts and
measurement techniques, the perception of the magnitudes of influence, and obtain
consistent, practical results. Since internal and external factors influence measure-
ment results for the measurement process, we need to estimate the measurement
uncertainty associated with usage requirements.

The book’s methodology for estimating measurement uncertainty follows the
guidelines presented in the Guide for the Expression of Measurement Uncertainty
(GUM) [4], recommended by the International Bureau of Weights and Measures
(BIPM).

Throughout this book, we incorporated the conceptual definitions found in VIM
and complemented them with additional clarifications when deemed necessary.

We also adopted the BIPM edition of the International System of Units (SI) [3] as
an essential reference. It already incorporates the new definitions of the SI base units,
which came into force on May 20, 2019.

This material is a new edition of the book published in Brazil in 2020 by GEN—
Grupo Editorial Nacional, entitled “Metrologia e incerteza de medigdo: conceitos e
aplicagdes” [1]. This new edition, which maintains the same original name, was
adapted to an international metrological context and expanded. We include an
additional chapter highlighting measurement uncertainty in conformity assessment
processes.
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X Presentation

In this book, we seek to present and discuss the concepts and tools in a very
technical language but in a didactic, clear, and simple way. Several practical
examples and solved exercises were incorporated, as well as several others to be
worked on by the reader. Mid- and higher-level professionals can absorb and apply
the knowledge immediately in the industry or their laboratory activities.

The first chapter analyzes the history of measurements and units of measurement,
ending with the presentation of the International System of Units (SI) and associated
concepts.

The second chapter addresses the basic concepts of metrology, discussing its
importance and objectives. It presents the metrological structure at the international,
regional, and national levels for metrology (legal and scientific) and ends with the
interconnection of metrology with standardization.

In the third chapter, we present the concept of significant digits, the rounding
techniques, and how to apply them in a measurement result. We highlight the main
ideas and statistical tools used in metrology, such as the mean, standard deviation,
variance, and the most usual probability distributions adopted in the study of
metrology (uniform, triangular, normal, and t-Student).

Chapter 4 analyzes the critical metrological characteristics of measurement sys-
tems, presents the types and possible errors encountered in the measurement process,
and reinforces the concepts of accuracy and precision.

The fifth and sixth chapters explore the types of uncertainty and how to evaluate
their values, considering the measurement carried out both directly and indirectly.
As mentioned, the methodology for estimating measurement uncertainty follows the
Guide for the Expression of Measurement Uncertainty (GUM) guidelines.

We dedicate three chapters of this book to calibration and measurement uncer-
tainty in process conformity.

We detail the metrological traceability chain and how to choose a measurement
standard considering the process’s tolerance. We present calibration examples for
different measuring instrument types. We adjust the calibration points using a
function and check the influence of this adjustment on the final uncertainty. We
also perform a detailed analysis and interpretation of the calibration certificates.

However, knowing that knowledge is never too much, all criticism and sugges-
tions that improve this book will always be welcome.

Good studies, and thank you very much.

Pedro Paulo Novellino do Rosario — pedropaulonovellino@ gmail.com

Alexandre Mendes - al.mendes @ gmail.com



Preface of the Brazilian Edition

The book’s publication by Alexandre Mendes and Pedro Paulo Novellino do
Rosério is more than opportune. Unfortunately, in Brazil, there is a significant
shortage of didactic publications dedicated to metrology intended to train profes-
sionals, whether at the middle or higher level. You can count the books offering
courses or disciplines in the area on your fingers. To compound this situation, some
available material is outdated and still refers to outdated concepts or definitions.

The future, getting closer every day, will require professionals with good techni-
cal and creative training. These professionals, not only those in the areas of Engi-
neering and Technology but also in the Natural Sciences and other areas, must have a
complete conceptual basis to account for performance in environments where
measurements are taken, use of standards and technical regulations, understanding
of the measurement process, correct expression of results and associated
uncertainties.

The acronym STEAM (Science, Technology, Engineering, Arts, and Mathemat-
ics) describes the foundation of the new professions. Metrology and measurement
have a key role as a transversal basis for this knowledge.

As quoted by the authors, and never emphasized enough:

When you can measure what you are talking about and express it in numbers, you know
something about it. However, when you cannot measure it and cannot express it in numbers,
your knowledge is limited and unsatisfactory: it may be the beginning of knowledge, but
you, in your thinking, have advanced very little towards the stage of science. (LORD
KELVIN)

The Strategic Guidelines for Metrology in Brazil address and update this concern.
However, fundamental metrology concepts are still clearly lacking in many areas of
professional training.

Professionals not affectionate to the metrological area (such as health and envi-
ronmental professionals, laboratory technicians, and industrial sectors, among
others) increasingly need to deal with sophisticated and high-tech equipment and
instruments in situations where measurement processes and measured quantities
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Xii Preface of the Brazilian Edition

must be well-known, interpreted, analyzed, and treated to reflect reliable values,
often with a significant impact on health, safety, and the environment.

In this context, expanding and disseminating information on metrology princi-
ples, technical barriers, conformity assessment, and standardization for the general
population can provide society with technical knowledge that helps citizens know
their rights and improve their quality of life (BRAZIL, 2017, p.59).

Written in direct and rigorous language but with a fluidity that facilitates reading
and learning, this work is based on the discipline’s fundamental compendia in their
latest editions: the International Vocabulary of Metrology, the International System
of Units, and the Guide to the expression of measurement uncertainty.

It is also based on the authors’ enormous experience in discussion, professional
performance, and teaching practice in formal, middle, and higher-level or continuous
training processes. The authors have already written a book on the subject, having
published several technical, didactic, and scientific works in collaboration with
numerous experts.

However, in my humble opinion and to our happy surprise, the work that comes
to us is a new book, with much content, updated, covering more topics, and written
in a way that allows the student (at any level) to have an understanding most
complete of the discipline.

Américo Tristao Bernardes

Associate Professor at the Federal University of Ouro Preto

President of the Brazilian Society of Metrology
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Chapter 1 ®)
The International System of Units (SI) Qe

1.1 Units of Measure: A Brief History

Since the beginning of civilization, human beings have always had to perform
measurements, even if this was done intuitively. When they began to live in a
community, this need to measure and weigh increased. With the advent of commerce
and the establishment of private property, measuring the land and the results of its
work was necessary for sale or exchange.

The first units of measure arose from their daily use and were based on parts of the
human body. In principle, they could be considered “references,” that is, anyone else
could verify a measure. Thus emerged measurement units such as the inch, the hand,
the foot, the yard, and the step. It is obvious these “references” were not fixed, as the
human body is not standardized, and measures vary from individual to individual.

The Egyptians also used the size of the cubit, one of the forearm bones, as a
standard of length measurement. Again, as the cubit varied from one person to
another, Pharaoh Khufu established a granite standard based on the bone length of
your arm during the construction of its pyramid (about 2900 BC). This pattern,
whose reproduction we see in Fig. 1.1, was called the Egyptian royal cubit.

Over time, wooden bars to facilitate transportation replaced the granite bars, but
as wood was worn out, lengths equivalent to the royal cubit were recorded on the
walls of the main temples. This way, people could periodically check their wooden
bars or do others.

In France, in the seventeenth century, a unit of linear measurement was standard-
ized in a two-pin iron bar at the extremes, forming a calibrator. The distance between
these two pins was considered a “foise,” the bar was spoiled on the outer wall of the
Grand Chatelet, the fortification that kept the head of one of the bridges of access to
Paris.

Thus, as in the case of the standard cubit, interested parties could check their
measuring instruments (Fig. 1.2).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 1
P. P. Novellino do Rosario, A. Mendes, Metrology and Measurement Uncertainty,
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2 1 The International System of Units (SI)

Fig. 1.1 Reproduction of
the Egyptian royal cubit.
(Photo by the authors)

Fig. 1.2 Le Grand Chatelet—one of the oldest fortifications in Paris. (https://www.pinterest.fr/
pin/319544536061326825/)

These unit systems, based on the human body, were used until the end of the
eighteenth century when a revolutionary movement arose in France.

The French Revolution in 1789 resulted from the dissatisfaction of the bourgeois,
composed of traders, artisans, and liberal professionals, who disagreed with King
Louis XVI’s absolutist domain and its privileges. They considered that a set of
measures based on the anatomy of kings did not have any scientific basis, so a new
measurement system that valued science should be conceived and could be adopted,
with the same accuracy, around the world, and in all business transactions.

Members of the French Academy began to discuss the best way to elaborate a
metric system. In 1790, Charles-Maurice de Talleyrand-Périgord presented a pro-
posal to the National Assembly saying that the wide variety of weights and measures
generated confusion and obstructed trade (Fig. 1.3).
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Fig. 1.3 Talleyrand.
(https://media.gettyimages.
com/id/2381529/pt/foto/
charles-maurice-de-
talleyrand-perigord)

Knowing a Little More ...

Better known as Talleyrand, he was a French politician and diplomat. It
demonstrated admirable political survival capacity by holding high positions
in the French revolutionary government under Napoleon during the restoration
of the Bourbon monarchy and under King Louis Filipe. After 100 days of
Napoleonic, he assumed the position of Chairman of the State Council, but his
revolutionary past led him to be fired in September of the same year. Allied to
liberals, he actively participated in the rise to the throne of Louis Filipe of
Orleans. The ambassador in London had a fundamental participation in the
negotiations between France and the United Kingdom, as in the creation of the
Kingdom of Belgium and the signing of the covenant between France, the
United Kingdom, Spain, and Portugal—the quadruple alliance. Accused of a
cynical and immoral life, he claimed to serve France, not political regimes. He
was one of the most controversial figures in France.

The academy wanted a standard and repelled arbitrary and uncovered definitions.
The name meter is adopted for the basic unit of length, which came from the Greek
word metron, which means measure. The meter was defined as a measure equivalent
to one-tenth of the millionth of the distance between the North Pole and the Ecuador
line throughout the meridian, which went from Dunkerque to Barcelona.

A system with multiples and submultiples was sought, and volume units were
created. These were then used to form cubes with length measurements and weight
units filled with distilled water.

Thus, the units of length, volume, and mass were interconnected, with the entire
system deriving from a unique, universal, and invariable pattern: the meter. On
March 30, 1791, the Assembly approved this measurement system. On April
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Table 1.1 Measures used by i SI equivalent
England 1 inch 25.4 mm

1 foot 304.8 mm

1 yard 0.9144 m

1 mile 1609 m

1 grain 64.799 mg

1 ounce 2835 ¢

1 pound 453.6 g

1 ton 1016.05 kg

7, 1795, the National Convention forced the use of the metric system, adopting the
names “meter,” “liter,” and “gram,” with multiples and submultiples.

The changes were not well seen by England, which claimed to be a country whose
economy was based on industry, commerce, and finance, and that abrupt changes
would damage its growth, forcing it to change the dimensions of most exports and
units used in pieces of machinery.

They claimed that moderate changes should be made since, with the decree of the
imperial act of weights and measures, a measuring system elaborated based on
Roman units was used throughout the British Empire.

Table 1.1 presents the measures most commonly used by England.

An international commission, instituted on August 8, 1870, and formed by
delegates from 30 countries, proposed the establishment of an organization funded
by the member countries. This commission would be tasked with defining and
maintaining new standards, verifying countries' standards, and developing new
instruments.

On May 20, 1875, a date known as International Metrology Day, 17 countries
(Argentina, Austria-Hungary, Belgium, Brazil, Denmark, France, Germany, Italy,
Peru, Portugal, Russia, Spain, Sweden-Norway, Switzerland, Ottoman Empire,
United States of America, and Venezuela) created the BIPM (International Bureau
of Weights and Measures) during the last session of the Metre Diplomatic
Conference.

The French government made the headquarters of BIPM, 43,520 m?, available. It
is close to Paris, in the domains of the Breteuil Pavillon (Saint-Cloud Park). The
members of the Meter Convention (currently 64 Member States and 36 associates)
ensure that BIPM expenses are maintained (Fig. 1.4).

Knowing a Little More...

Even before the Meter Treaty (1875) definition, several scientists were already
working on determining units of measure. In 1832, mathematician and scien-
tist Carl Friedrich Gauss elaborated a system to consolidate all units into three.
The velocity unit, for example, would be the combination of the distance
unit (meter) with the unit of time (second), giving the unit m/s. The force unit
would be the combination of the mass unit (kg) with the acceleration unit

(continued)
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(m/s?), which would give rise to kg m/s”, also known as Newton (N). In the
1860s, James Clerk Maxwell and William Thomson (Lord Kelvin) established
a basic unit system that, coupled with derived units, would compose a system
of coherent units.

The first General Conference on Weights and Measures (CGPM), in 1889,
adopted a materialized prototype standard in a 10% platinum—iridium bar, which
is stored in BIPM to the present day.

From the subscription of the Metre Treaty, metrology advanced rapidly, and in
1921, the sixth CGPM amended the treaty. The metric system incorporated the
second and ampere, being called MKSA (meter, kilogram, second, and ampere).

The 11th CGPM revised the metric system, then known as the International
System of Units (SI), on October 14, 1960.

In 1983, the meter was defined as the “length of the path traveled by the light in
vacuum for a time interval of 1/(299,792,458) of a second.” Finally, the standard of
length is no longer represented by a platinum bar and is immaterialized; that is, it
contained physical greatness to describe it, being in charge of metrologists to ensure
technology everywhere in the world can reproduce it.

The great discussion continued with the dematerialization of the kilogram unit,
also defined as the mass of a platinum—iridium cylinder maintained at the headquar-
ters of BIPM. For many years, until 2019, it was the only SI unit still represented by
a materialized object.

Brazil is our native country, one of the 17 Meter Diplomatic Conference signatory
countries. Allow us a brief history. During the reign of D. Pedro I, the units of
measure followed the standards of Portugal. On June 26, 1862, D. Pedro II

Fig. 1.4 BIPM (International Bureau of Weights and Measures). (https://www.bipm.org/
documents/20126/43899263/pavillon-de-breteuil-garden-september-21-sized.jpg)


https://www.bipm.org/documents/20126/43899263/pavillon-de-breteuil-garden-september-21-sized.jpg
https://www.bipm.org/documents/20126/43899263/pavillon-de-breteuil-garden-september-21-sized.jpg
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promulgated Imperial Law Number 1157 and adopted the French decimal metric
system throughout the country. As mentioned earlier, Brazil was one of the first
nations to adopt the new system.

In 1961, the National Institute of Weights and Measures (INPM) was created, and
the International System of Units became the official system through Decree 52,243
of August 30, 1963, later replaced by Decree 63,323, September 12, 1968. In 1973,
the INPM was replaced by the National Institute of Metrology, Standardization and
Industrial Quality INMETRO), currently called the National Institute of Metrology,
Quality and Technology.

1.2 The International System of Units (SI)

The International Vocabulary of Metrology (VIM) defines the International System
of Units (SI) as follows:

System of units, based on the International System of Quantities, their names and symbols,
including a series of prefixes and their names and symbols, together with rules for their use,
adopted by the General Conference on Weights and Measures (CGPM). [VIM—1.16]

To complete the reasoning, we present the definition of the International System
of Quantities:

System of quantities based on the seven base quantities: length, mass, time, electric current,
thermodynamic temperature, amount of substance, and luminous intensity.[VIM—1.6]

Some characteristics of SI:

* Unique units which can be reproduced and performed anywhere in the world;

» Few base units, separate and independent;

* Coherent, the combination of existing units produces other units without
constants.

Knowing a Little More...

Since 1970, the BIPM has published the International System of Units in S/
Brochure or Brochure Sur Le SI (in French), printed and digital versions.
(source: https://www.bipm.org/en/publications/si-brochure)

The SI is the system of units in which:

* The unperturbed ground state hyperfine transition frequency of the cesium 133 atom
Avcg 18 9,192,631,770 Hz,

» The speed of light in vacuum c is 299,792,458 m/s,

*  The Planck constant h is 6.626,070 15 x 10~>*J s,

+ The elementary charge e is 1.602,176 634 x 10~ C,

+ The Boltzmann constant k is 1.380,649 x 107> J/K,

+ The Avogadro constant N, is 6.022,140 76 x 10** mol ',


https://www.bipm.org/en/publications/si-brochure
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* The luminous efficacy of monochromatic radiation of frequency 540 x 10" Hz, Ky, 18
683 Im/W,

where the hertz, joule, coulomb, lumen, and watt, with unit symbols Hz, J, C, Im,

and W, respectively, are related to the units second, meter, kilogram, ampere, kelvin,

mole, and candela, with unit symbols s, m, kg, A, K, mol, and cd, respectively, according
toHz=s'T= kg m? s’z, C=As,Im=cd m?>m 2 =cdsr,and W = kg m? s,

The numerical values of the seven defining constants do not have uncertainty. (Source: SI
brochure 9th edition)

1.2.1 Quantity

Property of a phenomenon, body, or substance, where the property has a magnitude that can
be expressed as a number and a reference.
A reference can be a measurement unit, procedure, reference material, or a combination.
The concept of ‘quantity’ may be generically divided into, e.g., ‘physical quantity,’
‘chemical quantity,” and ‘biological quantity,” or base quantity and derived quantity.
[VIM—1.1]

Based on the information found in VIM, the nature of quantity is a common
aspect of mutually comparable quantities. The division of “quantity” according to
the “nature of a quantity” is somewhat arbitrary.

Knowing a Little More...
The quantities diameter, circumference, and wavelength are usually consid-
ered of the same nature, that is, of the quantity called length.

Heat, kinetic energy, and potential energy are usually considered part of the
same quantity called energy.

Quantities of the exact nature in a given system of quantities have the same
dimension. However, quantities of the same dimension are not necessarily similar.

The momentum of strength and energy are not, by convention, considered of the
exact nature, although they have the same dimension. The same occurs for thermal
capacity and entropy, as well as for the number of entities, relative permeability, and
mass fraction.

A base quantity is the greatness of a chosen subset by convention of a given
system of quantities, in which no greatness of the subgroup can be expressed as a
function of others. The subset mentioned in the definition is called a set of base
quantities. Base quantities are considered mutually independent, as a product of
powers from other base quantities cannot express base quantities.

A derived quantity is defined as a function of the base quantities of this system.

In a system of quantities with the length and mass as its base quantities, the
specific mass is a derived quantity defined by the quotient of a mass by a volume
(length to the cube).
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1.2.2 Measurement Unit

Real scalar quantity, defined and adopted by convention, with which any other quantity of

the same kind can be compared to express the ratio of the two quantities as a number.

NOTE 1 Measurement units are designated by conventionally assigned names and symbols.

NOTE 2 Measurement units of quantities of the same quantity dimension may be designated
by the same name and symbol even when the quantities are not of the same kind. For
example, joule per kelvin and J/K are respectively the name and symbol of both a
measurement unit of heat capacity and a measurement unit of entropy, which are
generally not considered to be quantities of the same kind. However, in some cases,
special measurement unit names are restricted to be used with quantities of a specific
kind only. For example, the measurement unit ‘second to the power minus one’ (1/s) is
called hertz (Hz) when used for frequencies and becquerel (Bq) when used for activities
of radionuclides.

NOTE 3 Measurement units of quantities of dimension one are numbers. In some cases,
these measurement units are given special names, e.g., radian, steradian, and decibel, or
are expressed by quotients such as millimole per mole equal to 10~ and microgram per
kilogram equal to 10~°.

NOTE 4 For a given quantity, the short-term “unit” is often combined with the quantity
name, such as “mass unit” or “unit of mass.” [VIM—1.9]

In SI, there are two classes of measurement units: the base and the derived units.

1.2.3 Base Unit

Measurement unit that is adopted by convention for a base quantity. [VIM—1.10]

Base units are seven independent physical quantities. Table 1.2 presents the new
definitions and symbols of the base units since May 20, 2019.

Knowing a Little More ...
The General Conference on Weights and Measures (CGPM), in its 25th
meeting in November 2014, adopted a resolution on the new revision of the
International Unit System (SI), validated at the 26th meeting in 2018. In this
review, the kilogram, ampere, kelvin, and mole were redefined based on the
fixed numerical values of Planck constant (%), elementary load on a proton (e),
Boltzmann constant (k), and Avogadro constant (V,), respectively.
Subsequently, the seven basic SI units were defined based on seven refer-
ence constants, to be known as “SI defining constants”: the hyperfine transi-
tion frequency of the cesium—second; the speed of light in the vacuum—
meter; the Planck constant—Xkilogram; the elementary load in a proton—
ampere; Boltzmann’s constant—kelvin; the Avogadro constant—mol; and
the luminous efficacy of a specified monochrome source—candela. This has
resulted in a more straightforward and more fundamental definition of the

(continued)
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whole and dismissed the last of the definitions based on a material artifact—
the international prototype of the kilogram maintained in BIPM.

The main disadvantage of the old definition of the kilogram was that it
referred to the mass of the artifact, which, by nature, we know is not stable.
Comparisons between the official copies and the international prototype
showed some disagreement over time. The drift in the mass of the international
prototype, since 1889 has yet to be demonstrated, but it should undoubtedly be
present. The change rate of its mass could be determined only by insufficiently
high absolute experiences.

The new kilogram unit can measure with the “watt scale (or kibble scale),”
an instrument that allows mechanical with electromagnetic energy to compare
two separate experiences. Ampere can be measured using Ohm’s law (A = V/
Q) and practical achievements of V and €, based on Josephson and Quantum
Hall effects. Kelvin can be defined by the new system using acoustic ther-
mometry. The technique allows you to determine the speed of sound in a
sphere full of gas at a fixed temperature. The mole can be performed as the
accurate amount of atoms in a perfect sphere of pure-28 silicon. (Source:
Adapted from https://www.bipm.org/en/publications/misses-en-pratique/)

1.2.4 Derived Unit

Measurement unit for a derived quantity. [VIM—I1.11]

They are units formed by combining base units according to mathematical
relations that correlate the corresponding quantities. Table 1.3 presents some exam-
ples of derived units.

1.2.5 Dimensional Analysis of the Quantities

Dimensional analysis studies the quantities and relationships between the respective
measurement units of these quantities. The study of dimensional analysis becomes a
powerful ally that helps us write SI and obtain some equations involving physical
quantities.

The VIM provides the following definition for quantity dimension:

Expression of the dependence of a quantity on the base quantities of a system of quantities as
a product of powers of factors corresponding to the base quantities, omitting any numerical
factor. [VIM—1.7]

Table 1.4 presents the symbols corresponding to the dimensions of quantities.
According to VIM—1.7, the size of a quantity Q is represented by:


https://www.bipm.org/en/publications/misses-en-pratique/
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Quantity

Unit

Symbol

Definition

L
1
E

meter

It is defined by taking the fixed numerical value of the
speed of light in vacuum c to be 299,792,458 when
expressed in the unit m s~ where the second is
defined in terms of the cesium frequency Avc

uent

ampere

It is defined by taking the fixed numerical value of the
elementary charge e to be 1.602,176 634 x 10™'° when
expressed in the unit C, which is equal to A s, where
the second is defined in terms of Avcg

intensity

candela

cd

It is defined by taking the fixed numerical value of the
luminous efficacy of monochromatic radiation of fre-
quency 540 x 10'2 Hz, Kq, to be 683 when expressed
in the unit Im W™, which is equal to cd sr W' ored
ST kg’1 m~2 s>, where the kilogram, meter, and second
are defined in terms of h, ¢, and Avc,

kilogram

kg

It is defined by taking the fixed numerical value of the
Planck constant h to be 6.626,070 15 x 10> when

expressed in the unit J s, which is equal to kg m* s,
where the meter and the second are defined in terms of

¢ and Avgg

mole

mol

One mole contains exactly 6.022,140 76 x 107 ele-
mentary entities. This number is the fixed numerical
value of the Avogadro constant, N, when expressed in
the unit mol™" and is called the Avogadro number

kelvin

It is defined by taking the fixed numerical value of the
Boltzmann constant k to be 1.380,649 x 10723 when
expressed in the unit J K~ ', which is equal to kg m® s~
2K~!, where the kilogram, meter, and second are
defined in terms of h, ¢, and Avc,

second

It is defined by taking the fixed numerical value of the
cesium frequency Avcs, the unperturbed ground state
hyperfine transition frequency of the cesium 133 atom,
to be 9,192,631,770 when expressed in the unit Hz,
which is equal to s~

Source: SI brochure 9th edition

dim (Q)=L*M’T"I° @°NgJ'

Where the dimensional exponents a, f, 7, J, €, &, and # can be positive, negative,

or zero.

Solved Exercise 1.1
In 1851, the English physicist and mathematician George Stokes deduced a formula
for the frictional force that acts in a sphere of radius R immersed in a liquid of
dynamic viscosity 7, which moves at speed v. The formula deduced by stakes is F =
67Rnv. Considering this formula, what is the dynamic viscosity unit in the Si?
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Table 1.3 Examples of derived units

11

Other SI
Quantity Unit Symbol | Base unit units
Plane angle Radian rad m/m
Area Square meter A m?
Electric field Volt per meter V/m mkgs > A
Capacitance Farad F m kg~ C/V
14 A2
Electric charge Coulomb C sA
Electric conductance Siemens S m kg~ ANV
13 A2
Electric potential Volt \% m’kgs AT | W/A
difference
Energy, work, amount of Joule J m’ kg s™2 Nm
heat
Luminous flux Lumen Im cd cd sr
Force Newton N m kg s>
Frequency Hertz Hz 5!
Inductance Henry m? kg sT2A72 | Wb/A
Density, mass density Kilogram per cubic P kg/m®
meter
Power, radiant flux Watt w m’ kg s /s
Pressure Pascal Pa m ' kgs? N/m?
Electric resistance Ohm Q m’kgs 2 A2 | V/A
Celsius temperature Degree Celsius® °C K
Magnetic flux density Tesla T kgs A~ Wb/m?
Velocity, speed Meter per second v m/s
Volume Cubic meter m’

Source: SI brochure 9th edition
“The degree Celsius is used to express Celsius temperatures. The numerical value of a temperature
difference or temperature interval is the same when expressed in degrees Celsius or kelvin

Table 1.4 Dimensions of base quantities

Base quantity Quantity symbol Symbol for dimension
Length Lx,r L

Mass m M

Time t T

Electric current i 1

Thermodynamic temperature T (C]

Amount of substance n N

Luminous intensity I, J
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Solution: Let us write the equation as a function of 7. Therefore, we have:

_F
"= xRy

. ~ dim(F)
dm(n) = FoR)-dim()
dim(R) =L

dim(v)=LT !

The quantity force (newton) is expressed by the formula f = m-a, where a is the
acceleration of the body with mass m.
Then:

a=m/s* —dim(a) =LT 2
dim(F) = dim(m)-dim(a)
dim(F) = MLT ~>

Substituting in the dim() equation, we have:

_ MLT?

g7 —lp-l
=TI7 =ML™'T

dim(n)

1 1. -2

Thus, the unit of 7 is kg m™ s~ ! However, as the pascal unit (Pa)iskgm™" s~ °,
we can represent the dynamic viscosity unit in SI as pascal second (Pa s).

Solved Exercise 1.2
We have the equation P = v’k, where v is velocity. Since P is pressure, k must be.

(a) Mass

(b) Density
(c) Mass flow
(d) Weight

Solution: Let us write the equation as a function of k.

P
k==
2
Doing a dimensional analysis of k:
. _ dim(P)
dim(k) = F0)

As pressure is force/area, we have:
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. _ dim(force)
dim(P) = dim(area)
-2
dim(P) = % =ML™'T?

The dimension of v* is:
dim(v*) =L*T >
Therefore, the dimension of k is:

dim(P) _ML™'T 2 _ ML-3

dim(k) = dim(v?) [

In ST, this represents, Un(k) = %, the density unit. Therefore, the correct answer
is (b).

1.2.6 Decimal Multiples and Submultiples

Multiples and submultiples were defined in the SI, with the names and symbols
given in Table 1.5.

Except for the prefixes da (deca), h (hecto), and k (kilo), all multiple prefix
symbols are written with capital letters, and all submultiple symbols are written
with lowercase letters. All prefix names are written with lowercase letters, except at
the beginning of a sentence.

Table 1.5 Decimal multiples “pactor [ Prefix | Symbol | Factor | Prefix Symbol

and submultiples 10% ronna R 107! deci d
1077 quetta Q 1072 centi c
10% yotta Y 1073 milli m
10%! zetta Z 1076 micro B
108 exa E 10~° nano n
109 peta P 1072 pico p
10" tera T 107" femto |f
10° giga G 10718 atto a
10° mega M 107! zepto z
10° kilo k 107%* | yocto y
10 hecto h 1077 ronto r
10! deca da 10730 quecto q

Source: SI brochure 9th edition
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Although the multiples da (deca) and h (hecto) and submultiple d (deci) are not

foreseen, their use is not shared, and it is recommended to express in k (kilo), m
(milli), or p (micro).

1.2.7 SI Units and Symbols Writing Rules

The writing rules of symbols and units were initially proposed by the 9" CGPM in
1948. They were then adopted by ISO/TC 12 (ISO 31, quantities and units). Some
rules are presented below.

1.

The symbols are expressed with lowercase letters and in Roman characters.

Example: meter (m) second (s)

The exceptions are the Greek letter Q (unit of electrical resistance) and the liter
unit, which can also be written with L.

Note: The liter is not an SI unit, but its use is accepted.

. If the unit’s name is a proper name, the first letter of the symbol is capitalized,

but it is written with a lowercase letter.

Example: pascal (Pa) kelvin (K)

The spelling of °C is degree Celsius, as the degree unit begins with a lowercase
letter. Celsius is an adjective that starts with a capital letter because it is a
proper name.

. The symbols of the units have no plural and are not followed by points.

Example: 10kg 500 m 25

. When dividing one unit by another, use an inclined bar, horizontal trace, or

negative power.

Example: km/h ¥ km h™'

. To avoid ambiguities, use only one inclined bar, parentheses, or negative

powers.

Example: m/s” or m s~ 2 and never m/s/s

. The multiplication of the symbols of the units must be indicated by a space or a

point centered at half height (-).

Example: newton meter — N m or Nem

. The tonic accent does not fall on the prefix but on the unit.

Example: micrometer kilometer

. In writing a unit composed of the multiplication of unit names, a space or a

hyphen should be used to separate the names from the units.
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11.

12.
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Example: Pa s — pascal second or pascal-second.

. Time measurements:

Correct: Sh 14 min 3h30min 15s 2h

Wrong: 5:14h 3 h 30’15’ 3:30:15h

Note: The hour (h) and the minute (min) are not SI units, but their use is
accepted.

The numerical value precedes the unit, and there is always a space between the
number and the unit. Thus, since the value of a quantity is the product of a
number by a unit, the space is considered a sign of multiplication.

Example: 124.6 mm 459 °C 50 kg

Exception for this rule is the symbols of the units of grade (°), minute ('), and
second (”) of the flat angle (units outside of SI), for which there is no space
between the numerical value and the symbol of the unit. Example: 45° 25’ 6"

When a multiple or submultiple prefix is used, it is part of the unit and precedes
the symbol of unity without space between the prefix symbol and the unit
symbol.

Correct: 124.6 mm (numerical value/space/prefix of the unit/unit)
Wrong: 124.6 m m

Do not mix the name with the symbol.

Correct: kilometer per hour or km/h
Wrong: km/hour or kilometer/h

1.2.8 Non-SI Units Accepted for Use with the SI

BIPM recognizes the need to use widely used units, although they are not part of the

SI.

Table 1.6 presents some of these units.

1.3 Proposed Exercises

1.3.1 What is the symbol of the quantity length in SI?

(a) mts
(b) m

(c) KM
(d) km
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Table 1.6 Non-SI units that are accepted

Quantity Name Symbol | Value in ST units
Time Minute min 60 s
Hour h 3600 s
Day d 86,400 s
Plane and Degree ° /180 rad
phase angle | Minute ! 7/10,800 rad
Second " /648,000 rad
Volume Liter lorL 1dm®>=10"m’
Mass Tonne T 1000 kg
Dalton Da 1.660,539,040 (20) x 10~%" kg
Energy Electronvolt |eV The kinetic energy acquired by an electron in passing
through a potential difference of one volt in a vacuum
(1.602,176,634 x 10712 J)
Pressure Bar bar 0.1 MPa = 100 kPa
Millimeter mmHg | 133.322 Pa
of mercury
Area Hectare ha 10* m?

Source: SI brochure 9th edition

1.3.2 What is the symbol of the quantity time in SI?

(@ s
(b) sec
(©h
(d) hs

1.3.3 What is the symbol of the quantity of electric current in SI?

(@) A
(b) a
(c) Amp
(d) Ap

1.3.4 What is the symbol of the quantity velocity in SI?

(a) mts/s
(b) m/sec
(¢c) km/hr
(d) m/s

1.3.5 What is the symbol of the quantity voltage in SI?

(T
(b) VA
©Vv
(d) VT
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1.3.6 What is the value of 1 pm in power of ten?

(@) 10° m
(b) 10° m
(c) 107°m
(d) 103 m

1.3.7 The unit of force in SI is:

(a) dyna

(b) newton

(c) kilogram-force
(d) kilogram

1.3.8 The unit of pressure in SI is:

(a) pascal

(b) psi

(c) kilogram-force
(d) bar

1.3.9 The symbol of quantity temperature in SI is:

(@ K
(b) °F
(©) °K
dC

1.3.10 Mark the correct writing.

(a) 18 hrs
(b) 3 mts
(c) 10 hs
d9L

1.3.11 Mark the correct writing.

(a) 18h

(b) 4 KM/H
(c) 10 mts
(d) 9Kg

1.3.12 What is the value of 1 MHz in power of ten?

(a) 10° Hz
(b) 107 % Hz
(c) 1072 Hz
(d) 107° Hz
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1.3.13 What is the value of 1 ns in power of ten?

(a) 10° s
(b) 10°s
(c) 1077 s
(d) 10° s

1.3.14 Check the option that only has base units of the SI.

(a) meter, second, degree Celsius
(b) meter, hour, degree Celsius
(¢) kilometer, second, kelvin

(d) meter, ampere, kelvin

1.3.15 Check the option that only has derived units of the SI.

(a) meter, second, degree Celsius
(b) joule, hour, degree Celsius
(c) joule, newton, volt

(d) meter, ampere, kelvin

1.3.16 The base units of the SI include:

(a) second, meter, candela, newton
(b) second, meter, candela, kelvin
(c) second, meter, kelvin, joule

(d) second, mole, joule, ampere
(e) second, mole, ampere, pascal

1.3.17 Check the option that contains a pressure value written adequately in units of
the SI.

(a) 200 MPA
(b) 200 MPa
(c) 200 Mpa
(d) 200 mpa
(e) 200 mPA

1.3.18 What is the unit for pressure?

(a) pascal
(b) mol

(c) candela
(d) kelvin
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1.3.19 What is the unit for volume?

(a) kilogram

(b) cubic meter
(c) square meter
(d) mol

1.3.20 The symbol m*/s represents:

(a) density
(b) volume
(c) flow

(d) velocity

1.3.21 The symbol of electric resistance is:

(a) B
(b) Q
(©) p
d z

1.3.22 What is the unit for the electric charge?

(a) joule
(b) coulomb
(c) volt
(d) farad

1.3.23 The base units of SI are:

(a) sec, °C, PA, kg, A
(b) km, kg, K, mol, A
(c) m, K, s, A, kg

(d) s, m, cd, bar, °C

1.3.24 The time interval of 2.4 min is equivalent to the SI:

(a) 24 seconds

(b) 124 seconds
(c) 144 seconds
(d) 160 seconds
(e) 240 seconds

1.3.25 In equation x = k%
x represents a distance, v represents velocity, a represents acceleration, and
k represents a dimensionless constant. What should be the value of exponent
n so that the expression is physically correct?
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1.3.26 In the SI, the units of electrical potential difference, electric field, work, and
capacitance are, respectively:

(a) W,N/C,F,]
(b) V,N/C, ], C
(©) V,V/im,J,F
(d) W,V/m,F,J
(e) W, V/im, ], F

1.3.27 The physical intensity (/) of sound is the ratio between the amount of energy
(E) that crosses a unit of area (§) perpendicular to the direction of propagation of
sound in the unit of time (7). In the SI, what is the unit of 1?

1.3.28 Mathematically, expressing any physical quantity according to other physical
quantities through the dimensional formula is possible. Using the dimensional
symbols of the fundamental quantities of SI, determine the dimensional formula
of power quantity.

(a) MLT!
(b) ML T
(c) M LT
(d) MLT3
(e) MLT 2

1.3.29 In the analysis of specific movements, it is reasonable to suppose that the
frictional force is proportional to the square of moving particle speed. Analyti-
cally, f = kv°. What is the unit of the proportionality constant k in the SI?



Chapter 2 ®)
Knowing Metrology and Its Structure S

2.1 Metrology: Introduction

Metrology supports a universal agreement for units of measure, that is, the standard-
ization of values. For this to happen, there must be an international and national
metrological structure to ensure that the measuring instruments are maintained and
applied properly and correctly in daily operational and business transactions. This
standardization of units of measure is of great commercial importance for nations
and companies.

For example, car manufacturing has several parts suppliers, each with its own
production system and measurement instruments. However, all parts should fit
perfectly into the car assembly. Imagine a wheeled supplier manufacturing and
measuring the holes of the fixing screws with a slightly smaller diameter than
those manufactured and measured by the screw supplier; the wheels could not
be used.

As we saw in the previous chapter, using different units of measurement for the
same quantity conflicts with the standardization of language established in the
International System of Units (SI). However, some British colonization countries
still employ other units of measure, such as the inch, foot, pound, yard, and mile.

This use can lead to severe misconceptions and disastrous consequences for
society. Let us consider some real cases as examples.

Case 2.1: Vasa, the Swedish Warship (Fig. 2.1)

Swedish warship Vasa wrecked in 1628 on its inaugural trip, less than two
kilometers from the coast, causing the death of 30 crew members. At the time,
armed with 64 bronze cannons, it was considered the most powerful ship in the
world. The archeologists who studied him after he was lifted from the bottom of the
sea in 1961 said he was thicker to the stubborn than the stubby. One reason may be
that the workers used different systems of measurements, as archeologists found four
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Fig. 2.1 ‘Vasa ship’ can be visited today at the Vasa Museum in Stockholm, Sweden. (https:/
schweden-tipp.de/wp-content/uploads/2016/08/Vasa-Museum-Gem%C3%A4lde-Francis-
Smitheman.jpg)

Fig. 2.2 Air Canada: Boeing 767-200. (Photo @ Robert Pearson)

rulers used in the construction: two were marked in Swedish feet, which were
12 inches. In contrast, the others were Amsterdam feet with 11 inches.
(Text adapted from https://en.wikipedia.org/wiki/Vasa_(ship))


https://en.wikipedia.org/wiki/Vasa_(ship)
https://schweden-tipp.de/wp-content/uploads/2016/08/Vasa-Museum-Gem%C3%A4lde-Francis-Smitheman.jpg
https://schweden-tipp.de/wp-content/uploads/2016/08/Vasa-Museum-Gem%C3%A4lde-Francis-Smitheman.jpg
https://schweden-tipp.de/wp-content/uploads/2016/08/Vasa-Museum-Gem%C3%A4lde-Francis-Smitheman.jpg
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Fig. 2.3 Artist’s conception
of the Mars Climate Orbiter.
(Source: NASA/JPL/Corby
Waste—Wikimedia
Commons)

Case 2.2: Boeing 767-200 from Air Canada, Known as Gimli Glider (Fig. 2.2)

In 1983, Canada adapted its measurement system from English to the Interna-
tional Unit System. At a land stop, an Air Canada Boeing 767-200 had problems
with the fuel control device. The maintenance team then used the manual measuring
ruler to define and complete the volume of kerosene in the plane tanks. However,
that aircraft was the first of the fleet that used fuel control in SI, but the track
technicians based on the fuel density of 1.77 pounds per liter (English system),
while in SI, this value was 0.80 kilogram per liter. Because of this confusion, the
plane was fueled with less than half of the volume of kerosene necessary to make the
route between the cities of Montreal and Edmonton (would need 22,300 kilograms
of fuel and received 22,300 pounds, approximately 10,115 kilograms). The result of
the “metrological failure” was a dry crash in the middle of the way and at an altitude
of 12,500 m. The aircraft landed planning safely at the Gimli Industrial Aero Park in
Manitoba.

(Text adapted from https://en.wikipedia.org/wiki/Gimli_Glider)

Case 2.3: Spaceship Mars Climate Orbiter (Fig. 2.3)

In 1999, the spaceship Mars Climate Orbiter deviated from the original route
when entering Mars’ atmosphere, because its trajectory was erroneously calculated
using two measurement systems: SI and the English system. This caused NASA to
lose US$ 300 million, as it caused the loss of spacecraft. The explanation is that the
spaceship was not disintegrated but had a propeller destroyed as it entered the
planet’s atmosphere. Attempts to replace it in the correct orbit and to prevent Mars
from giving space were unsuccessful. NASA director Carl Pilcher told Science News


https://en.wikipedia.org/wiki/Gimli_Glider%3e

24 2 Knowing Metrology and Its Structure

Fig. 2.4 Laufenburg Bridge. (https://news.bbcimg.co.uk/media/images/75025000/jpg/_750251
52_laufenburg_ap624.jpg)

magazine that the fact they did not identify the “metrological failure” during the
route was a grave mistake made by the mission officials.
(Text adapted from http://goo.gl/tRfBel)

Case 2.4: Laufenburg Bridge (Fig. 2.4)

Sea level varies from place to place, and countries use different reference points.
Britain, for example, measures the height from the sea level in Cornwall, and France
does it from the sea level in Marseille. Germany measures concerning the North Sea,
while Switzerland, like France, opts for the Mediterranean. In 2003, this generated a
problem in Laufenburg. This village is on the border between Germany and Swit-
zerland, because, as the two halves of a bridge approached each other during the
construction, instead of being “at the same height from sea level,” one side was
54 centimeters above the other. The German side had to be relegated to complete the
bridge.

(Source: https://marine-digital.com/article_bridge_between_germany_and_
switzerland)

The Laufenburg Bridge was not motivated by using different systems but by
adopting a different “reference.” However, the situations experienced by Air Canada
and NASA would not have happened, if there were no flaws in “metrological
communication” because, in principle, there were no errors in the calibration of
the measuring instruments.

Calibrating is essential, but harmonizing the concepts and measurement units
enables the correct interpretation of information and specific decision-making in a
globalized market.


http://goo.gl/tRfBeJ%3e
https://marine-digital.com/article_bridge_between_germany_and_switzerland%3e
https://marine-digital.com/article_bridge_between_germany_and_switzerland%3e
https://news.bbcimg.co.uk/media/images/75025000/jpg/_75025152_laufenburg_ap624.jpg
https://news.bbcimg.co.uk/media/images/75025000/jpg/_75025152_laufenburg_ap624.jpg
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2.2 Importance of Measuring

Measuring is part of our daily lives:

When looking at the display of a clock, we see the result of the time measurement
(hour, minute, and second);

When buying a heavy product on a scale, we have the mass measurement
(kilogram, gram);

When supplying the car at the gas station, we noticed the (liter) volume mea-
surement of fuel;

When we received the electricity bill from our residence, we could see the
electricity consumption measured in that period (kW).

Anyway, we are constantly witnessing and experiencing the results of

measurements.

Measuring is a process that involves the existence of:

A phenomenon (either a quantity or a substance) we want to know;

A measuring instrument (or a set of instruments) calibrated, preferably;

A unit of measure (kg, m, °C, etc.);

An individual trained to perform the act of measuring and correctly interpreting
the result.

Two great scientists highlighted the importance of measuring many years ago

(Figs. 2.5 and 2.6).

Fig. 2.5 Galileo Galilei.
(https://tse4.mm.bing.net/
th?id=OIP.5WKAICf1

vtt9p20tIS3wNQHaHa&
pid=Api&P=0&h=180)

Measure what is measurable, and make measurable what is not.
(https://mathshistory.st-andrews.ac.uk/Biographies/Galileo/quotations/)

When you measure what you are speaking about and express it in numbers, you know
something about it, but when you cannot, your knowledge about it is meager and
unsatisfactory.

(https://mathshistory.st-andrews.ac.uk/Biographies/Thomson/quotations/)



https://mathshistory.st-andrews.ac.uk/Biographies/Galileo/quotations/
https://mathshistory.st-andrews.ac.uk/Biographies/Thomson/quotations/
https://tse4.mm.bing.net/th?id=OIP.5WKAICf1vtt9p2OtlS3wNQHaHa&pid=Api&P=0&h=180
https://tse4.mm.bing.net/th?id=OIP.5WKAICf1vtt9p2OtlS3wNQHaHa&pid=Api&P=0&h=180
https://tse4.mm.bing.net/th?id=OIP.5WKAICf1vtt9p2OtlS3wNQHaHa&pid=Api&P=0&h=180
https://tse4.mm.bing.net/th?id=OIP.5WKAICf1vtt9p2OtlS3wNQHaHa&pid=Api&P=0&h=180
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Fig. 2.6 William Thomson
(Lord Kelvin). (https://res.
cloudinary.com/dk-find-out/
image/upload/q_80,w_1920
Jf_auto/A-Corbis-IH1
90312_15pagce.jpg)
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Fig. 2.7 Metrological agents

2.3 Measurement Objective

Decisions must be made based on information in any field of activity. In the
scientific and technological area, such information is generally the result of mea-
surements directly or indirectly related to the object under study.

Measurement is the “process of experimentally obtaining one or more quantity
values that can reasonably be attributed to a quantity.”

Measurements can be influenced by different metrological agents, such as (i) the
measurement method, (ii) the sample, (iii) the analyst, (iv) the measurement instru-
ment, (v) the environmental conditions, and (vi) the traceability of the measurement
instruments and standards. Thus, we understand the measure as the “result of the
measurement process,” in this sense, its quality depends on how such a process is
managed.

Figure 2.7 presents the different metrological agents that influence the measure-
ment result.

Let us discuss each metrological agent briefly.


https://res.cloudinary.com/dk-find-out/image/upload/q_80,w_1920,f_auto/A-Corbis-IH190312_l5pagc.jpg
https://res.cloudinary.com/dk-find-out/image/upload/q_80,w_1920,f_auto/A-Corbis-IH190312_l5pagc.jpg
https://res.cloudinary.com/dk-find-out/image/upload/q_80,w_1920,f_auto/A-Corbis-IH190312_l5pagc.jpg
https://res.cloudinary.com/dk-find-out/image/upload/q_80,w_1920,f_auto/A-Corbis-IH190312_l5pagc.jpg
https://res.cloudinary.com/dk-find-out/image/upload/q_80,w_1920,f_auto/A-Corbis-IH190312_l5pagc.jpg
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2.3.1 Measurement Method

Here is a definition of measurement method: “generic description of a logical
organization of operations used in a measurement’ [VIM—2.5].

The measurement method should ideally be contained in a technical standard;
however, it may also be present in an operational procedure, a work instruction, a
flowchart, or any other internal organization document.

It should be noted that the measurement method should be developed by experts
in the subject and used by professionals with knowledge and training in the tech-
niques defined by the process.

Example 2.1

The standard CEN-EN 837-1 Pressure Gauges—Part 1: Bourdon Tube Pressure
Gauges—Dimensions, Metrology, Requirements, and Testing determines the con-
ditions for calibrating the Bourdon-type gauge. Among the various requirements, it
defines, for example, the minimum number of calibration points as a function of the
accuracy class (Table 2.1).

Accuracy class: Class of measuring instruments or measuring systems that
meet stated metrological requirements that are intended to keep measurement
errors or instrumental measurement uncertainties within specified limits under
specified operating conditions.

NOTE 1 An accuracy class is usually denoted by a number or symbol adopted
by convention.
NOTE 2 Accuracy class applies to material measures. [VIM—4.25].

Knowing a Little More... (Fig. 2.8)

Eugene Bourdon was born in 1808 in Paris, France. He began his career as
a watchmaker and later as an engineer. In 1849, Bourdon invented the meter
that bears his name. This gauge can measure up to 6800 atmospheres. This
invention also helped decrease the number of steam engines because, before
Bourdon, measuring this amount of pressure was almost impossible. He died
in 1884, but his Bourdon tube pressure gauge is still used today.

Table 2.1 Number of cali- Accuracy class Number of calibration points
bration points of a pressure

gauge according to CEN-EN 0.1,0.25; 0.6 10
837-1 ]; ].6; 2.5 5
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Fig. 2.8 Eugeéne Bourdon.
(Photo: public domain)

Fig. 2.9 Sample of screws

to determine the thread step.
(https://images.pexels.com/

photos/259988/)

2.3.2 Sample

A sample is a representative part of a whole that allows the results to be attributed to
the original set once they have been evaluated, analyzed, and measured.

Example 2.2
Let us check the thread step of a lot of 10,000 screws (Fig. 2.9).

One option would be to measure all 10,000 screws. However, it would be a time-
consuming and costly process. Thus, a viable alternative is to randomly choose a
certain number of production parts as a sample, using criteria established in a
technical standard, for example. The average step measurements of the selected
pieces are considered a reasonable estimate for the total screws.


https://images.pexels.com/photos/259988/
https://images.pexels.com/photos/259988/

2.3 Measurement Objective 29

We must be careful when selecting and using a sample to represent the set;

otherwise, we can assign wrong values due to improper choice or handling of the
sample.

Some primary care should be observed in the choice and definition of the sample:

Apply statistical methods to determine the sample size since it should represent
the whole;

Make the random selection of the sample and ensure that it belongs to the same
manufacturing batch. For example, an excellent way to determine the ambient
temperature of a laboratory is to measure temperature in various locations, not
just one place;

Ensure that measurements are performed under conditions defined in standards,
methods, or technical procedures. Example: using CEN-EN 837-1 again, it
represents that the temperature of the calibration site must be comprised between
(20 £ 2) °C;

Avoid contamination that may modify the physical or chemical characteristics of
the sample;

Check, where applicable, the validity of the sample.

2.3.3 Analyst

The analyst, human factor, and central element of the measurement process
(Fig. 2.10) need:

Know the measurement method;

Know how to evaluate environmental conditions and decide on whether or not to
measure measurements;

Be able to select the sample to be evaluated adequately;

Be trained for the correct use of the instruments that make up the measurement
system,;

Register and correctly interpret the result of the measurements.
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Fig. 2.10 Ultrasonography
examination measurement
system. (https://images.
pexels.com/photos/70
894007/)

2.3.4 Environmental Conditions

Initially, we need to define influence quantity:

Quantity that, in a direct measurement, does not affect the quantity that is measured, but
affects the relation between the indication and the measurement result.

Example: Temperature of a micrometer used for measuring the length of a rod, but not
the temperature of the rod itself, which can enter into the definition of the measurand.
[VIM—2.52].

Influence quantities can usually not be avoided but should be monitored and
controlled to minimize their effects on the measurement result.

Thus, what we call environmental conditions are the influences of these environ-
mental factors, such as temperature, humidity, dust, vibration, fluctuation in the
power supply, electric or magnetic noise, lighting, or other factors in a place where
measurements will be realized.


https://images.pexels.com/photos/7089400/
https://images.pexels.com/photos/7089400/
https://images.pexels.com/photos/7089400/
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Fig. 2.11 Digital
thermohygrometer
(temperature and relative
humidity). (https://pixabay.
com/photos/time-clock-
humidity-air-hygrometer-23
53382/)

Example 2.3

To measure the concentration of a particular active ingredient that enters a medi-
cine’s composition, the laboratory temperature must be maintained at (22.0 + 0.5) °©
C and relative humidity at (50 + 5) %.

Under ideal conditions, an air conditioner system should control temperature and
moisture.

A thermohygrometer (Fig. 2.11) must measure these conditions to enable the
analyst to take action if these variables leave control.

We must interrupt measurements or correct their results when any anomaly arises,
either in temperature or moisture (Fig. 2.11).

2.3.5 Measuring Instrument

A measuring instrument is a “device used for making measurements, alone or in
conjunction with one or more supplementary devices.” [VIM—3.1].

Examples 2.4
Some measuring instruments (Figs. 2.12, 2.13, 2.14, 2.15, and 2.16).

Measurement indicates or controls a process, monitors an alarm, or investigates a
physical, chemical, or biological phenomenon. In simple monitoring, measurement


https://pixabay.com/photos/time-clock-humidity-air-hygrometer-2353382/
https://pixabay.com/photos/time-clock-humidity-air-hygrometer-2353382/
https://pixabay.com/photos/time-clock-humidity-air-hygrometer-2353382/
https://pixabay.com/photos/time-clock-humidity-air-hygrometer-2353382/
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Fig. 2.12 Vernier caliper.
(https://pixabay.com/
photos/vernier-caliper-
measuring-instrument-452
987/)

Fig. 2.13 Micrometer.
(https://pixabay.com/
photos/micrometer-
measure-measuring-tool-50
5350/)

Fig. 2.14 Multimeter.
(https://pixabay.com/
photos/multimeter-ohm-
meter-voltmeter-523153/)



https://pixabay.com/photos/micrometer-measure-measuring-tool-505350/
https://pixabay.com/photos/micrometer-measure-measuring-tool-505350/
https://pixabay.com/photos/micrometer-measure-measuring-tool-505350/
https://pixabay.com/photos/micrometer-measure-measuring-tool-505350/
https://pixabay.com/photos/multimeter-ohm-meter-voltmeter-523153/
https://pixabay.com/photos/multimeter-ohm-meter-voltmeter-523153/
https://pixabay.com/photos/multimeter-ohm-meter-voltmeter-523153/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
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Fig. 2.15 Bourdon gauge.
(https://pixabay.com/
photos/pressure-
manometer-measure-up-164
6350/)

Fig. 2.16 Analog scale.
(https://pixabay.com/
photos/libra-kitchen-scale-1
638996/)

ASTROBALH.

OO0
“«, o
uq‘-(-'l:.‘.!u,ld;;u'h"“\»

systems indicate the instant or accumulated value of the quantity to be measured.
Examples are automobile speedometers and odometers, clinical thermometers, and
pressure gauges.


https://pixabay.com/photos/pressure-manometer-measure-up-1646350/
https://pixabay.com/photos/pressure-manometer-measure-up-1646350/
https://pixabay.com/photos/pressure-manometer-measure-up-1646350/
https://pixabay.com/photos/pressure-manometer-measure-up-1646350/
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https://pixabay.com/photos/libra-kitchen-scale-1638996/

34 2 Knowing Metrology and Its Structure

Fig. 2.17 Odometer

Knowing a Little More... (Fig. 2.17)
(https://pixabay.com/photos/speedometer-mileage-speed-car-498748/)

The function of the odometer is to measure the distances traveled by the
vehicle. The cars have a digital odometer, which works by electrical pulses a
sensor generates on its axis. Each turn sends a pulse to the electronics center,
generating a signal for the panel to scan the information. However, many
vehicles in circulation still have a mechanical odometer. This system consists
of a wire rope connected to the gearbox, the speedometer clock, and a gear
game hidden behind the vehicle panel. In the gearbox, the cable is connected to
a gear that moves according to the axle turns. Consequently, the wire rope also
turns around, moving an endless gear installed near the panel. This piece
triggers a gear game that pushes the marker.

A control system uses a transducer and controller to maintain a quantity or
process within specific values. According to the definition, a transducer is a “device
used in measurement, which provides a quantity of output, which has a specified
relationship with an input quantity.”

In this situation, the quantity is measured, its value is compared to a reference
value, and a correction action is taken to maintain the quantity close to the reference
value.


https://pixabay.com/photos/speedometer-mileage-speed-car-498748/
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Fig. 2.18 Level control
system

Reference

. . Reference R
International National standard standard Working Measurement
standard standard (accredited (users) standard
laboratories)

Fig. 2.19 Metrological traceability

Knowing a Little More...
See the Level control system of a reservoir, as shown in Fig. 2.18.

The transducer (LT) sends to the controller (LC) an electrical signal
proportional to the level (L) variation in the water tank. The controller
compares this sign of the process variable (level) to a reference (set point)
value (SP) and, depending on the magnitude of this difference, sends a
correction signal to the control valve (LV), so that it reduces (or increases)
the liquid flow rate to keep the level stable within the reservoir.

An alarm system operates on warning, sound, or visual warning equipment after
an unwanted or dangerous situation (e.g., a fire alarm).

The alarm system can also operate with safety systems to maintain equipment
integrity, especially for people.

When investigating a phenomenon, an example is measuring the “hole in the ozone
layer” in the earthly atmosphere to determine its consequences for life on the planet.

2.3.6 Metrological Traceability

The definition of metrological traceability is (Fig. 2.19):

Property of a measurement result whereby the result can be related to a reference through a
documented unbroken chain of calibrations, each contributing to the measurement uncer-
tainty. [VIM—2.41].
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The calibrated standards and instruments with guaranteed traceability transfer
accuracy to measurements, enabling an adequate estimate of the final measurement
uncertainty. Thus, before performing and using a measurement’s result as relevant
information for any decision, it is necessary to analyze the measurement process to
know all sources of influence associated with metrological agents.

Once these sources of influence are identified, the measurement process must be
active to yield quality measures, that is, metrological reliability.

Thus, the uncertainty derived from each metrological agent influences the final
uncertainty of the measurement process. In the measurement chapters (Chaps. 5 and
6), we will address the concept of uncertainty and the methodology for its estimate,
considering the variables of influence.

2.4 Metrological Reliability

Generically, reliability is the capacity or probability of a system to perform a
function and maintain its operation under specific conditions, correctly, as provided
in the project, during a predetermined period, under routine circumstances, as well as
in hostile and unexpected circumstances.

Thus, metrological reliability is the ability of a measurement system to convey
certainty and confidence in the results obtained. Without metrological proof, there is
no way to guarantee the reliability of control data of characteristics that determine
the quality of the product.

Analyzing the environment on the consumer side, the existing metrological
system should enable users’ access to compliance verification mechanisms of the
products offered. From the results of the measurements performed by manufacturers
and verified by the controlling agencies, consumers may trust that industrialized
products have been adequately measured (e.g., weight, volume, chemical composi-
tion, concentration, etc.) and released for commercialization.

2.5 Metrology Areas of Expertise

We can separate metrology into two significant areas of activity: Legal metrology
and Scientific and industrial metrology.

2.5.1 Legal Metrology

It is the area of metrology closest to the ordinary citizen. Its primary function is to
protect products and services that involve and need measurement.
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The International Organization of Legal Metrology (OIML) defines it as “the
application of legal requirements for measures and measuring instruments.”

Metrological regulations based on the OIML guidelines establish technical
requirements, metrological control, use, and marking requirements, and the units
of measure that measuring instrument manufacturers and users must meet.

In addition to commercial activities, measuring instruments used in official
activities, in the medical area, in the manufacture of medicines, and the fields of
occupational, environmental, and radiation protection are subjected to metrological
control. In these cases, control assumes particular importance in the face of the
dangerous adverse effects of wrong results on human health.

Table 2.2 shows the measuring instrument categories included in the OIML
Certification System and the corresponding OIML Recommendations.

The OIML Certification System (OIML-CS) is a system for issuing, registering,
and using OIML certificates and their associated OIML-type evaluation/test reports
for types of measuring instruments (including families of measuring instruments,
modules, or families of modules) based on the requirements of OIML
Recommendations.

2.5.2 Scientific and Industrial Metrology

Scientific metrology is linked to scientific research and methodologies of the highest
metrological quality. It deals with measurement standards and laboratory
instruments.

As they unfold, these actions also include industry measurement systems (indus-
trial metrology), which control production processes and ensure the quality of
products and services offered to the market.

2.6 International Metrological Structure

The international structure of each of the two significant areas of Metrology (legal
and scientific) is very similar.

2.6.1 Legal Metrology

International Organization of Legal Metrology (OIML)
It is an intergovernmental treaty that, among other activities, develops regulations,
rules, and documents for use by the legal and industry authorities.
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Table 2.2 Measuring instrument category and OIML Recommendation

Recommendation
Measuring instrument category number
Taximeters R 21
Material measures of length R 35
Active electrical energy meters R 46
Water meters R 49
Continuous totalizers R 50
Automatic catchweighers R 51
Sound level meters R 58
Moisture meters for cereal grains and oilseeds R 59
Load cells R 60
Automatic gravimetric filling instruments R 61
Heat meters R 75
Non-automatic weighing instruments R 76
Cryogenic liquids R 81
Level gauges for stationary storage tanks R 85
Integrating-averaging sound level meters R 88
Focimeters R 93
Vehicle exhaust emissions R 99
Sound calibrators R 102
Pure-tone audiometers R 104
Automatic rail-weighbridges R 106
Discontinuous totalizers R 107
Pressure balances R 110
Weights R 111
Liquids other than water R 117
Speech audiometry R 122
Evidential breath analyzers R 126
Ergometers for foot crank work R 128
Multidimensional measuring instruments R 129
Liquid-in-glass thermometers R 133
Weighing road vehicles in motion R 134
Areas of leather R 136
Gas meters R 137
Compressed gaseous fuel systems for vehicles R 139
Continuous measurement of SO2 in stationary source emissions R 143
Continuous measurement of CO, NOX in stationary source emissions R 144
Ophthalmic instruments—Impression and applanation tonometers R 145
Protein measuring instruments for cereal grains and oilseeds R 146
Non-invasive non-automated sphygmomanometers R 148
Non-invasive automated sphygmomanometers R 149
Continuous totalizing automatic weighing instruments of the arched R 150
chute type
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Fig. 2.20 OIML

Organisation internationale de
Métrologie Légale

international Grganization of

Legal Metrology

Knowing a Little More... (Fig. 2.20)

Since 1955, OIML has launched the foundations for a world metrology
system.

The mission of the OIML is to enable economies to put in place effective legal

metrology infrastructures that are mutually compatible and internationally recog-

nized, for all areas for which governments take responsibility, such as those which

facilitate trade, establish confidence and harmonize the level of consumer protection
worldwide.

Available in: https://www.oiml.org/en

International Conference of Legal Metrology

OIML’s maximum decision-making body. The conference, which takes place every
four years, comprises representatives of member countries, countries that come
together as observers, and associations of international institutions. Its purpose is
to define the general policy and promote the implementation of OIML metrological
guidelines.

International Committee on Legal Metrology (CIML)
It is the organization’s functional decision body. Approve the annual BIML work
plan and adopt OIML recommendations, documents, and publications.

International Bureau of Legal Metrology

It is OIML’s secretariat and headquarters. The bureau organizes conference and
commission meetings, executes conference decisions and commissions, and dissem-
inates and distributes the organization’s publications (Fig. 2.21).

2.6.2 Scientific Metrology

General Conference of Weights and Measures (CGPM)

The CGPM is made up of member state delegates and associate observers. Among
its attributions is the discussion and analysis of the necessary provisions to ensure the
propagation and improvement of the SI.
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Fig. 2.21 BIML. (https://
www.oiml.org/en/
ressources/biml/sacre_
coeur.jpg)

Fig. 2.22 BIPM
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International Committee on Weights and Measures (CIPM)

Composed of 18 member countries, it acts as an international scientific authority,
and its main task is to promote world uniformity in units of measure through direct
action or the presentation of resolution projects to the CGPM.

International Bureau of Weights and Measures (BIPM) (Fig. 2.22)

An intergovernmental organization established by the Meter Convention in 1875
aims to ensure and promote the global comparability of measurements, including the
supply of an international unit system (SI) and the International Reference Time
Scale (UTC) for scientific research and innovation.

2.7 Regional Metrological Structure

2.7.1 EURAMET—The European Association of National
Institutes of Metrology

The mission is to develop and disseminate an integrated, profitable, and competitive
measurement infrastructure for Europe, always considering the needs of the industry,
companies, and governments. With its services, EURAMET supports members in
meeting national requirements and establishing a balanced European measurement
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infrastructure. Improving the benefits of metrology for society is one of the highest
priorities for EURAMET and its members.

The CIPM MRA is very important for achieving the objectives. The International
Committee of Weights and Measures (CIPM) sponsored the creation of a mutual
recognition scheme (CIPM MRA) to promote and formalize the technical compe-
tence of its national metrology institutes and designated signatories.

Regional Metrology Organization

EURAMET is the European Regional Metrology Organization (RMO). It coordi-
nates the cooperation of the European National Metrology Institutes (NMI) in fields
such as Metrology Research, measurement traceability to SI units, international
recognition of national measurement standards, and calibration and measurement
capabilities (CMC). Through the transfer of knowledge and cooperation between the
members, EURAMET facilitates the development of national metrology
infrastructure.

European Research Programs in Metrology

EURAMET is responsible for the elaboration and execution of the European
Metrology Research Program (EMRP) and the European Metrology Program for
Innovation and Research (EMPIR), which is designed to promote collaboration
between the National Institutes of Metrology (INM) European and the partners of
the industry or the academic world.

Goals
Commitment of key stakeholders

EURAMET must understand and prioritize investment in European measurement
infrastructure to address companies’ and governments’ present and future priorities.
To achieve this, EURAMET will strengthen your links and influence with key users
of the measurement infrastructure.

The objective is to develop critical associations, understand interested parties’
needs, increase the work’s impact, and anticipate market trends and needs based on
prospective analysis.

Increase influence with European political leaders and national governments

EURAMET’s responsibilities include supporting policy formulation, mainly
when measurement is essential in establishing and implementing the policy. Mea-
sures are an essential component of many European directives. EURAMET mem-
bers actively support the implementation of many CE directives through
measurement and monitoring work.

Further, develop cooperation in 1&D

In recent years, EURAMET has worked successfully with the European Com-
mission and many national governments of member countries to develop the
European Metrology Research Program (EMPR) and the European Metrology
Program for Innovation and Research (EMPIR).

The programs have initiated more than 100 joint research projects, and many
more are to come. The objective is to continue developing Europe’s metrology
capacity to face world challenges.
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Give a high value to members and associates
The objective is:

* Understand the actual needs and visions of the members and have an inclusive
approach to all the needs of the members;

* Support all members and associates in achieving their objectives, taking into
account the existing diversity but in balance with general European needs;

* Increase the scope of cooperation and exchange of resources/facilities for mutual
benefit and convergent development;

+ Stimulate the development of a stable national framework for metrology through
the proper participation of the critical actors in metrology and support for
excellence in metrology as a driving force.

Support quality infrastructure in Europe and internationally
The objective is:

* Improve the efficiency and efficacy of CIPM/MRA;

* Influence the Joint Committee of the Regional Metrology Organization in close
cooperation with other RMOs to optimize CIPM/MRA processes and
governance;

» Strengthen cooperation with European Cooperation for Accreditation (EA) in
areas of common interest associated with accreditation;

* Work with the EA to implement technical aid projects in accession and outside
European countries.

European Metrology Networks
Close collaboration in the science of measurement with a new sustainable structure

EURAMET and its members envision a world-leading metrology capacity based
on high-quality scientific research and an effective and inclusive infrastructure that
meets the rapid needs and progress of the end users. The European Metrology
Networks (EMN) help achieve this goal.

There are currently 12 EMNs: Advanced Manufacturing, Clean Energy, Climate
and Ocean Observation, Energy Gases, Laboratory Medicine, Mathematics and
Statistics, Pollution Monitoring, Quantum Technologies, Radiation Protection,
Safe and Sustainable Food, Smart Electricity Grids, and Smart Specializations in
Northern Europe.

The EMNSs will analyze the needs of European and world metrologies and address
them in a coordinated manner. Next, the members of the EMN will formulate
common metrology strategies that include aspects such as research, infrastructure,
knowledge transfer, and services. The members will commit to contributing to the
EMN and helping to establish sustainable structures strategically planned from the
beginning.

By providing a single point of contact to obtain information, support regulation
and standardization, promote best practices, and establish a longer-term integral
infrastructure, the EMNs aim to create and disseminate knowledge, obtain
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international leadership and recognition, and foster collaboration throughout the
scientific community of the measurement.
(Text adapted from https://www.euramet.org)

2.7.2 Inter-American Metrology System (SIM)

The Inter-American Metrology System (SIM), instituted in 1979, resulted from a
broad agreement between the national metrology organizations involving 34 nations.
Its mission is to promote and support an integrated measurement infrastructure in the
Americas, which allows each National Institute of Measurement to encourage
innovation, competitiveness, trade, consumer security, and sustainable development,
effectively participating in the international metrology community.

Organized in five subregions (Noramet, Carimet, Camet, Andimet, and Suramet),
it has a governor board structured by a coordinator of each subregion, a technical
committee, a professional development committee, and an integrated representation
that provides access to SIM in a worldwide agreement to compare standards at the
highest metrology level.

SIM is committed to implementing a global measurement system in the Americas
that will ensure the confidence of all users. Working to establish a robust regional
measuring system, SIM is essential to the development of a free trade area in the
Americas.

In the context of established cooperation, measures taken by the member coun-
tries will help to achieve:

» Establishment of national and regional measurement systems.

» Establishment of a hierarchy of the national standards of each country and
binding on regional and international standards.

+ Establishment of equivalence between national measurement standards and cal-
ibration certificates issued by national metrology laboratories.

* Comparability of the results obtained in measurement processes performed in
laboratories within the system.

* Training of technical and scientific personnel.

+ Distribution of technical and scientific documentation.

* Binding with international standards maintained by the International Bureau of
Weights and Measures (BIPM).

» Straight cooperation with the BIPM, the OIML, and other international organi-
zations interested in laboratory accreditation (ILAC) and with technology and
measurement patterns (IMEKO), research and development (universities and
organizations P&D), oriented to promote competitiveness, promote more equita-
ble business transactions and support essential development in health, safety,
sustainable industrial development, and environmental protection.

(Text adapted from https://sim-metrologia.org/)
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2.7.3 Other Regional Metrological Structures

The Asia Pacific Metrology Programme (APMP)

The APMP is a grouping of national metrology institutes (NMIs) from the Asia-
Pacific region engaged in improving regional metrological capability by sharing
expertise and exchanging technical services among Member laboratories. The
APMP is one of the six Regional Metrology Organizations (RMOs) that implement
the CIPM MRA for the worldwide mutual recognition of measurement standards
and calibration and measurement certificates. It is also one of the Specialist Regional
Bodies (SRBs) working with Asia-Pacific Economic Cooperation (APEC) to facil-
itate developing and implementing standards and conformance infrastructures that
address APEC goals.

(Text adapted from https://apmpweb.org/)

Euro-Asian Cooperation of National Metrological Institutions (COOMET)
COOMET is an organization for the Euro-Asian cooperation of National Metrology
Institutions (from the countries of Central and Eastern Europe, Asia, and nearby
countries). It is open to the National Metrology Institutions of countries from other
regions to join it. Its mission is to raise the level of metrology development, support,
and expansion of an integrated measurement infrastructure for countries in the Euro-
Asian region and other interested countries that makes it possible for every national
metrological institute to promote innovation, competitiveness, trade, consumer
safety, sustainability and ensuring international recognition. Main areas of cooper-
ation: Measurement standards of physical quantities; Legal metrology; Quality
management systems; Information and training; Innovative research in metrology.
(Text adapted from https://www.coomet.net/)

Southern African Development Community Cooperation in Measurement
Traceability (SADCMET)

The SADC Cooperation in Measurement Traceability coordinates metrology activ-
ities and services in the region to provide regional calibration and testing services,
including regulatory bodies, with readily available traceability to the SI units of
measurement through legally defined and regionally and internationally recognized
national measurement standards. Its primary objectives are to (i) Promote closer
collaboration among its members in their work on measurement standards within the
present decentralized regional metrology structure; (ii) Improve existing national
measurement standards and facilities and make them accessible to all members; (iii)
Ensure that new national measurement standards and facilities developed in the
context of SADCMET collaborations are accessible to all members; (iv) Contribute
to the formulation of and participate in intra- and interregional systems to maintain
the continued traceability of the national measurement standards of the SADC
member states to the SI units of measurement; (v) Encourage the harmonization of
legislation relating to national measurement standards.

(Text adapted from http://www.sadcmet.org/SitePages/Home.aspx)
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2.8 Metrological Structure in Brazil

2.8.1 National System of Metrology, Standardization,
and Industrial Quality (SINMETRO)

SINMETRO was instituted by Law Number 5966 of December 11, 1973, and is
tasked with managing the technological services infrastructure in metrology (legal,
scientific, and industrial), standardization, industrial quality, and conformity
assessment.

Compose the SINMETRO:

» National Council of Metrology, Standardization and Industrial Quality
(CONMETRO) and its technical committees.

* National Institute of Metrology, Quality and Technology (INMETRO).

» Brazilian Association of Technical Standards (ABNT).

* Certification bodies for quality systems, environmental management, products,
and personnel; Inspection organisms; Training bodies; Proficiency testing bodies.

» Accredited calibration and testing laboratories.

+ State Institutes of Weights and Measures (IPEM) and.

+ State metrological networks.

SINMETRO Areas
Legal Metrology

The activities of Legal Metrology in Brazil are before the law that instituted the
SINMETRO. In the 1930s, there was already a “Metrology Law,” and metrological
control began, in fact, with the creation of the National Institute of Weights and
Measures (INPM) in 1961, replaced in 1973 by INMETRO, which incorporated its
activities.

As stated earlier, legal metrology is one of the largest consumer protection
systems. INMETRO coordinates the Brazilian Network of Legal Metrology and
Quality (RBMLQ-I), which comprises the States’ Weight and Measures Institutes
(IPEM).

Scientific and Industrial Metrology

Scientific and industrial metrology promotes competitiveness and stimulates an
environment favorable to the country’s scientific and industrial development. It is
also essential to technological innovation. INMETRO coordinates this process, is
responsible for the fundamental metrological quantities with reliability equal to that
of the countries of the first world, and transfers measurement standards to the
society.

Testing and Calibrations

Responsibility for test activities (used for product certification) and calibrations
(from standards and industrial instruments) within the SINMETRO are the labora-
tories that make up the Brazilian Testing Laboratories Network (RBLE) and the
Brazilian Calibration Network (RBC). They are laboratories accredited by
INMETRO and can be public, private, mixed, national, or foreign.
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Standardization and Technical Regulation

The Brazilian Association of Technical Standards (ABNT) has this responsibility
in the SINMETRO and the authority to accredit sectoral standardization bodies for
performing these tasks. ABNT is a non-governmental organization that is
maintained with the contribution of the federal government and its associates. It
represents Brazil in international standardization forums (ISO and IEC) and regional
forums (COPANT and MERCOSUR). Conformity assessment and accreditation
activities are based on ISO/IEC standards and guides.

Accreditation

Accompanying the international trend in the sense that there is only one
accrediting organism per country within the scope of the SINMETRO, the only
accrediting body is INMETRO. ABNT Standards and Guides, COPANT, AMN
(MERCOSUR), IAF, ILAC, and IAAC guidelines establish the accreditation criteria
adopted in the SINMETRO. INMETRO, therefore, believes in certification organ-
isms (for quality systems, environmental management, products, and personnel),
inspection, training, proficiency testing (which provides more excellent reliability to
RBC and RBLE), calibration, and testing laboratories.

Knowing a Little More...
International institutions related to standardization, regulation, and accredita-
tion activities:

International Organization for Standardization (ISO) (Www.is0.0rg)

It is an independent, non-governmental organization endorsed by
171 national standardization bodies. Through its members, this entity gathers
experts to share knowledge and, based on consensus, voluntarily develops
relevant international standards that support innovation and provide solutions
to global challenges.

International Electrotechnical Commission (IEC) (www.iec.ch)

It is the world leader organization that prepares and publishes international
standards for all electrical, electronic, and related technologies. Industry,
commerce, government, testing and research laboratory experts, universities,
and consumer groups participate in IEC standardization work.

Pan American Standards Commission (COPANT) (www.copant.org)

It is a non-profit civil association composed of the national standardization
bodies of the Americas. It is the reference for technical standardization and
conformity assessment for the countries of the Americas, their members, and
their international peers.

Mercosur Standardization Association (AMN) (www.amn.org.br)

It is a non-profit civil association and non-governmental organization and
the only organism responsible for voluntary normalization within Mercosur. It
is composed of the Argentine Institute of Standardization and Certification
(IRAM), the Brazilian Association of Technical Standards (ABNT), the

(continued)
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Uruguay Institute of Technical Standards (UNIT), and the National Institute of
Technology, Standardization and Metrology (INTN—Paraguay).

International Accreditation Forum (IAF) (www.iaf.nu)

The World Association of Accreditation Bodies and other bodies are
interested in conformity assessment in management systems, products, ser-
vices, personnel, and similar conformity assessment programs. Its principal
function is to develop a single worldwide conformity assessment program to
reduce risk for companies and their customers and ensure that accredited
certificates can be reliable.

Inter-American Accreditation Cooperation (IAAC) (Www.iaac.org.mx)

It is an association whose mission is to promote cooperation between
accreditation bodies and stakeholders of the Americas, aiming at developing
conformity assessment structures to improve products, processes, and ser-
vices. It was created in 1996 in Uruguay and incorporated in 2001 as a civil
association according to Mexican law. It is not for profit and works based on
the cooperation of its members and stakeholders. It obtains adhesion fees,
voluntary contributions from its members, and donations based on regional
organizations projects, particularly the Organization of American States
(OAS) and the Physikalisch Technische Bundesanstalt (PTB) from Germany.

2.8.2 Brazilian Laboratory Structure

National Institute of Metrology, Standardization and Technology INMETRO)
Their skills and attributions in the area of metrology are:

Ensuring the standardization, maintenance, and dissemination of fundamental
units of the international system (SI).

Tracking the measurement units to international standards and spreading them to
industries.

Establishing the methodologies for the comparison of measurement standards,
instruments, and materialized measures.

Tracking the reference standards of the laboratories accredited to national
standards.

Acting in the area of legal metrology and supporting standardization and indus-
trial quality activities.

Accrediting laboratories and establishing value ranges and measurement
uncertainty.

INMETRO’s laboratories are home to technical divisions in acoustics and vibra-

tions, electricity, mechanics, optics, thermal, and chemistry. They are
responsible for:
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+ Standardizing the units of the International System of Units.

* Ensuring the traceability of national standards to BIPM standards or comparing
them to national standards of other countries by key comparisons coordinated by
the BIPM.

» Ensuring the traceability of the reference standards of the accredited laboratories
to national standards.

* Performing calibration of standards and measurement instruments as well as
specific tests.

Designated Laboratories by INMETRO

* National lonizing Radiation Metrology Laboratory (LNMRI) of the Institute of
Radioprotection and Dosimetry of the National Nuclear Energy Commission
(IRD/CNEN)

LNMRI, since 1989, has been designated by INMETRO to work in the area of
ionizing radiation. Before that, in 1976, the laboratory joined the Secondary Stan-
dard Dosimetry Laboratory—SSDL network of the International Atomic Energy
Agency (IAEA) to ensure the quality of radiotherapy measurements worldwide.

LNMRI aims to develop, maintain, and disseminate national ionizing radiation
and radioactivity standards. In addition, it provides calibration services and stan-
dards and develops necessary research in scientific metrology support for national
nuclear technological development. It maintains radioactive standards and measure-
ment systems for calibrating monitors, dosimeters, and radioactive sources. It is
responsible for the custody and maintenance of the Brazilian standard of neutron
fluency and for developing metrological techniques to standardize new
radionuclides.

(Text adapted from http://www.ird.gov.br).

* Division Hour Service (DSHO) of the National Observatory (ON)

DSHO, whose activities began at the Imperial Observatory of Rio de Janeiro,
created on October 15, 1827, by Emperor Dom Pedro I, obeys the established
international conventions and is in charge of generating, conserving, and dissemi-
nating the Brazilian legal time (HLB) to the entire national territory, with different
levels of accuracy and reliability, according to Brazilian law, besides promoting
research and development in the field of time and frequency metrology.

Since 1983, INMETRO has accredited the time service to perform time and
frequency calibrations, gaining the function of Time and Frequency Primary Labo-
ratory. Thus, DSHO is responsible for the national time and frequency standards that
underlie Brazilian metrological traceability. Internationally, BIPM is the body that
defines the traceability of national and HLB standards.

All signs generated and transmitted are referenced to national time and frequency
metrological standards, interreferenced by four cesium and one rubidium clock. The
frequencies of these signals have an accuracy of 0.5 x 10712, equivalent to an error
of 2.5 x 107° Hz at a frequency of 5 MHz. There is a permanent reference to the
coordinated universal time generated by BIPM.
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(Text adapted from http://pcdshO1.on.br).

Laboratories Accredited by INMETRO
INMETRO grants accreditation based on the standard ISO/IEC 17025: 2017,
according to the guidelines established by the International Laboratory Accreditation
Cooperation (ILAC) and the Good Practices Codes (GPC) from the Organization for
Economic Co-Operation and Development (OECD).

Accreditation is allowed to any laboratory that provides calibration or testing
service, independently or linked to an organization, public or private, national or
foreign, despite its size or area of expertise.

2.9 Technical Standards and Metrology

A technical standard establishes quality, performance, and safety requirements for
providing something, its use, or its final destination. It also stipulates procedures,
standardizes shapes, dimensions, types, and uses, fixes classifications or terminolo-
gies and glossaries, and defines how to measure and determine characteristics, such
as test methods.

Technical standards apply to products, services, processes, and management
systems in the most diverse fields. In general, the customer establishes the technical
standard to supply the good or service he wants to acquire. This can be done
explicitly when the customer clearly defines the applicable standard or expects that
the rules in use will be followed in the market where it operates.

Important
We can say that there is no metrology without technical standards!

2.9.1 TheISO 9001:2015 and the Metrology

ISO 9001:2015—Quality Management Systems—Requirements [11] specifies
requirements for a management system that can be used for internal application by
organizations, certification, or contractual purposes. Focusing on the metrological
issue, there is a specific technical requirement in the standard, 7.1.5.2 Measurement
Traceability, which establishes the following:

When measurement traceability is a requirement or is considered by the organization to be

an essential part of providing confidence in the validity of measurement results, measuring
equipment shall be:

(a) calibrated or verified, or both, at specified intervals, or before use, against measurement
standards traceable to international or national measurement standards; when no such
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standards exist, the basis used for calibration or verification shall be retained as
documented information;

(b) identified to determine their status;

(c) safeguarded from adjustments, damage or deterioration that would invalidate the
calibration status and subsequent measurement results;

The organization shall determine if the validity of previous measurement results has
been adversely affected when measuring equipment is found unfit for its intended purpose
and shall take appropriate action as necessary.

Knowing a Little More...

ISO 9001 requirement 7.1.5.2 requires the measuring instruments to be veri-
fied, calibrated, or both. According to VIM—2.44, verification means pro-
viding objective evidence that a given item fulfills specified requirements.

EXAMPLE I Confirmation that a given reference material, as claimed, is
homogeneous for the quantity value and measurement procedure concerned,
down to a measurement portion having a mass of 10 mg.

EXAMPLE 2 Confirmation that performance properties or legal require-
ments of a measuring system are achieved.

EXAMPLE 3 Confirmation that a target measurement uncertainty can be
met.

NOTE 1 When applicable, measurement uncertainty should be taken into
consideration.

NOTE 2 The item may be, e.g. a process, measurement procedure, mate-
rial, compound, or measuring system.

NOTE 3 The specified requirements may be, e.g. that a manufacturer’s
specifications are met.

NOTE 4 Verification in legal metrology, as defined in VIML, and in
conformity assessment in general, pertains to the examination and marking
and/or issuing of a verification certificate for a measuring system.

NOTE 5 Verification should not be confused with calibration. Not every
verification is a validation.

NOTE 6 In chemistry, verification of the identity of the entity involved, or of
activity, requires a description of the structure or properties of that entity or
activity.

In addition to this requirement, we see the need for metrology in others, partic-
ularly in 7.1.4 Environment for the operation of processes, which defines that “the
organization must determine, provide and maintain a necessary environment for the
operation of its processes and to achieve the conformity of products and services.”

The requirement also adds that an appropriate environment may include human
and physical factors (e.g., temperature, heat, humidity, illumination, ventilation, and
noise).

Moreover, how do we measure these physical factors? Answer: Metrology.
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2.9.2 The ISO/IEC 17025:2017 and the Metrology

The ISO/IEC 17025:2017 General requirements for the competence of testing and
calibration laboratories [12] comprise testing and calibrations performed using
standardized methods, non-normalized methods, and methods developed by the
laboratory. Figure 2.23 summarizes the various normative requirements in which
metrology is strongly present.

Facilities and environmental conditions—req. 6.3

* Monitor, control, and register environmental conditions
» Facilities and environmental conditions cannot adversely affect the validity of the
results

Equipment—req. 6.4

» Laboratory must have all measuring instruments, standards, and reference mate-
rials required to perform their activities.

* Equipment capable of achieving the accuracy and measurement uncertainty
required.

* Equipment must be calibrated.

* The laboratory must have a calibration program.

* Indicate calibration status.

* Ensure operation and calibration of an instrument that has come out of direct
control of the laboratory.

+ Intermediate checks performed according to procedure.

+ Instruments protected against adjustments that invalidate results.

SELECTION, VERIFICATION EVALUATION OF ENSURING THE
AND VALIDATION OF MEASUREMENT VALIDITY OF ]
METHODS UNCERTAINTY RESULTS -
72 7.6 \
METROLOGICAL 1 TESTING AND
TRACEABILITY > CALIBRATION
63 / / 6.4
65
- FACILITIES AND EQUIPMENT REPORTING OF
CONDITIONS RESSEES

6.8
ISO/IEC 17025 REQUIREMENTS s

Fig. 2.23 Metrology in the ISO/IEC 17025:2017 requirements
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Metrological traceability—req. 6.5

* Laboratory should establish and maintain metrological traceability of their mea-
surement results.

+ Calibrations and measurements traceable to the SI.

* Program and procedure for calibrating reference patterns by traceable organisms;
Used only for calibration; calibrated before and after adjustments.

» Reference materials: traceable to SI units or already certified reference materials.

Selection, verification, and validation of methods—req. 7.2

* Use appropriate methods and procedures to evaluate the measurement
uncertainty.

* Method validation includes, among other techniques, the calibration or evaluation
of the trend and accuracy using standards or reference materials.

Evaluation of measurement uncertainty—req. 7.6

+ Identification of contribution sources for measurement uncertainties.

+ Calibration: assessment of measurement uncertainty for all calibrations.

» Testing: assessment of measurement uncertainty or a method based on the
method.

Ensuring the validity of results—req. 7.7

» Use of certified reference materials.

 Interlaboratory comparison program or proficiency tests.
* Intermediate checks on measurement equipment.

* Replicated testing or calibrations.

+ Retesting or recalibration of retained items.

Reporting of results—req. 7.8

We fully dedicate Chap. 9 of this book to discuss the importance of this requirement.

2.9.3 Laboratory Accreditation

Calibration Laboratories

The authorized laboratories to perform calibration services gather technical skills
and abilities linked to industries, universities, and technological institutes and adopt
standards traceable to national or international metrological references, establishing
a relationship with the units of the International System of Units (SI).

Testing Laboratories
Like calibration, these laboratories gather skills and technical capacities associated
with industries, universities, and technological institutes. They are trained to carry
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out tests and performance tests on products with mandatory or voluntary certifica-
tion. The traceability of the measures is guaranteed by calibration of standards in
proven laboratories or directly in the laboratories of the National Metrology
Laboratory.

2.9.4 ILAC—International Laboratory Accreditation
Cooperation (www.ilac.org)

ILAC is the global association for the accreditation of laboratories, inspection bodies,

proficiency testing providers, and reference material producers, with a membership

consisting of accreditation bodies and stakeholder organizations worldwide. It is a repre-

sentative organization that is involved with:

e the development of accreditation practices and procedures,

* the promotion of accreditation as a trade facilitation tool,

e supporting the provision of local and national services,

* the assistance in developing accreditation systems,

* the recognition of competent testing (including medical) and calibration laboratories,
inspection bodies, proficiency testing providers, and reference material producers
around the world.

ILAC actively cooperates with other relevant international organizations to pursue these
aims. ILAC facilitates trade and supports regulators by operating a worldwide mutual
recognition arrangement—the ILAC Arrangement—among Accreditation Bodies (ABs).
The data and test results issued by laboratories and inspection bodies, collectively known
as Conformity Assessment Bodies (CABs), accredited by ILAC Accreditation Body members
are accepted globally via this Arrangement. Thereby, technical barriers to trade, such as the
re-testing of products each time they enter a new economy, are reduced to realize the free-
trade goal of “accredited once, accepted everywhere.” In addition, accreditation reduces
risk for business and its customers by assuring accredited CABs are competent to carry out
their work within their scope of accreditation. Further, the results from accredited facilities
are used extensively by regulators for the public benefit in providing services that promote
an unpolluted environment, safe food, clean water, energy, health, and social care services.
(Text obtained from ILAC-P14:09/2020—ILAC Policy for Measurement Uncertainty in
Calibration)

ILAC first started as a conference, held on 24-28 October 1977 in Copenhagen, Denmark, to
develop international cooperation for facilitating trade by promoting the acceptance of
accredited test and calibration results. In 1996, ILAC became a formal cooperation with a
charter to establish a network of mutual recognition agreements among accreditation
bodies. In 2000, the 36 ILAC Full Members, consisting of laboratory accreditation bodies
from 28 economies worldwide, signed the ILAC Mutual Recognition Arrangement (ILAC
MRA) in Washington, DC, to promote the acceptance of technical test and calibration data
for exported goods. The ILAC MRA for calibration and testing laboratories came into effect
on 31 January 2001. The ILAC MRA was then extended in October 2012 to include the
accreditation of inspection bodies. In May 2019, it was further extended to include the
accreditation of proficiency testing providers and in May 2020 for the accreditation of
reference material producers. (Text obtained from https://ilac.org/about-ilac/).

The ILAC Mutual Recognition Arrangement (ILAC MRA) provides the significant technical
underpinning to the calibration, testing, medical testing, and inspection results, provision of
proficiency testing programs and production of the reference materials of the accredited
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conformity assessment bodies that in turn delivers confidence in the acceptance of services
and results. The ILAC MRA supports the provision of local or national services, such as
providing safe food and clean drinking water, providing energy, delivering health and social
care, or maintaining an unpolluted environment. In addition, the ILAC MRA enhances the
acceptance of products across national borders. Technical trade barriers are reduced by
removing the need for additional calibration, testing, medical testing, and inspection of
imports and exports. In this way, the ILAC MRA promotes international trade, and the free-
trade goal of “accredited once, accepted everywhere” can be realized. (Text obtained from
https://ilac.org/ilac-mra-and-signatories/).

On the ILAC website, you can search (https://ilac.org/signatory-search/) for
accreditation bodies of the various countries to verify the activities of calibration
and testing (ISO/IEC 17025), medical testing (ISO 15189), inspection (ISO/IEC
17020), proficiency testing providers (ISO/IEC 17043), and reference material pro-
ducers (ISO 17034). Use this directory to find an accreditation body in the economy
where you require the calibrations, testing, or inspections to be carried out.

2.9.5 The ISO 10012:2003 and the Metrology

The ISO 10012:2003 Measurement management systems—Requirements for mea-
surement processes and measuring equipment' [13]—provide guidelines for mea-
suring process management and metrological evidence of measuring instruments
used to support and demonstrate conformity with metrological requirements.

The standard declares that an effective management system ensures the instru-
ments and measurement processes are suitable for their intended use. It also points
out that the management system should manage the risk that these measuring
instruments and methods can produce incorrect results that affect the quality of an
organization’s products.

ISO 10012: 2003 is an “essentially metrological” standard, and all its require-
ments deal with important subjects. However, we will highlight requirement 7—
metrological confirmation and realization of measurement processes—which pre-
sents a series of exciting guidelines, some of which we present to follow.

Knowing a Little More...
The following scheme represents a management model of a measurement
process, and the numbers in Fig. 2.24 refer to ISO 10012: 2003 requirements.

* Recalibration of a measuring instrument is unnecessary if it is within a valid
calibration situation. The metrological proof procedure may include mechanisms

"The ISO 10012: 2003 standard treats measuring instrument as a measurement equipment. As we
did not find this term in VIM, we always replace for instrument.
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Fig. 2.24 Measurement process management. (Source: ISO 10012:2003)

to verify that the uncertainties and measurement errors are within the permissible
limits.

Examples of metrological characteristics of instruments: range, trend, repeatabil-
ity, stability, hysteresis, effects of influence quantities, error, and reading
resolution.

Calibration history, technology, and knowledge advances can be used to deter-
mine metrological proof intervals. Statistical process control techniques may help
analyze calibration intervals.

The calibration results should be recorded, so that the traceability of all measure-
ments can be demonstrated and that calibration results can be reproduced under
conditions close to the original conditions.

A measurement process may require data correction, for example, due to envi-
ronmental conditions.

When specifying the measurement process, it may be necessary to determine
which measurements are required, what methods to use, what instruments should
be employed, and which skills and qualifications of the team will perform the
measurements.

It is recommended that the impact of the quantities of influence on the measure-
ment process be quantified.

The performance characteristics required for the intended use of the measurement
process must be identified and quantified. These characteristics are measurement
uncertainty, stability, repeatability, reproducibility, maximum permissible error,
and user skill level.

It is recommended that the measurement uncertainty consider the uncertainty of
the calibration of the measurement instrument.

Traceability is usually achieved through reliable calibration laboratories that can
be traced to national measurement standards. A laboratory that meets the require-
ments of ISO/IEC 17025: 2017 can be considered trustworthy.
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Still, within requirement 7—Metrological confirmation and realization of mea-
surement processes, it is essential to highlight the issue of records of the metrological
evidence process. These records should include:

» Single description and identification of the instrument: type, model, serial num-
ber, manufacturer, etc.

» Date that metrological evidence was performed.

» Evidence results.

+ Interval of the following evidence.

* Identification of the procedure (or method, norm, instruction, etc.) of evidence.

* Maximum acceptable or permissible errors.

* Relevant environmental conditions and declaration on necessary corrections.

» Uncertainties involved in calibration.

* Provide details of any intervention (maintenance, adjustment, modification) in the
measuring instrument.

* Limitations of use.

+ Identification of those who performed the metrological evidence.

+ Identification of those who are responsible for any correction of information
recorded.

+ Single identification of the report or calibration certificate.

» Traceability of measurement results.

* Metrological requirements for intended use.

» Result of calibration performed after, and where required, before any intervention
in the measuring instrument.

The standard states that the retention time of metrological evidence records
depends on several factors, such as customer requirements, statutory or regulatory
requirements, and the manufacturer’s civil liability. Records related to measurement
standards may need to be kept indefinitely.

2.9.6 Technical Standard and Technical Regulation
2.9.6.1 Technical Standard

ISO (International Organization for Standardization) defines a technical standard as
“a document established by consensus and approved by a recognized organism,
which provides minimum rules, guidelines or characteristics for activities or their
results, aiming at obtaining a great degree of sorting in a given context.”

It should be highlighted that technical standards are established by consensus
among those interested and approved by a recognized organism. They are also
developed for the benefit and cooperation of all interested parties and, in particular,
to promote the optimal global economy, taking into account functional conditions
and safety requirements.
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(a) Use of the Standards
Standards are used as a reference for conformity evaluation, such as certification,
calibration, or testing.

In addition to intending that the product follow a particular standard, the customer
often wants conformity with this standard to be demonstrated through conformity
evaluation procedures. Sometimes, these procedures, particularly certification, are
legally required for some markets (compulsory certification established by the
government to commercialize products and services). In others, although there is
no legal obligation, current practices in this market make it indispensable to use
specific conformity procedures, usually certification.

The legal order generally considers that the rules in force in the market should be
followed unless the client explicitly establishes another rule. Thus, when a company
intends to introduce its product or service into a particular market, it should seek to
know the rules that apply there and fit.

(b) Voluntarity of the Standards
The standards are voluntary and not mandatory by law, and it is possible to provide a
product or service that does not follow the applicable standard in the particular
market. However, in several countries, they are mandatory, at least in some areas.

On the other hand, providing a product that does not follow the applicable
standard in the market implies additional efforts to introduce it to this market.
These include convincingly demonstrating that the product meets customer needs
and ensuring that issues like exchanging components and inputs will not represent an
additional impediment or difficulty. From a legal point of view, when the applicable
standard does not follow, the supplier has additional responsibilities for using the
product.

Frequently, a standard refers to other standards necessary for its application.
Standards may also be required to comply with technical regulations or compulsory
certification.

(c) International, Regional, and National Standards
International

These are the technical standards established by an international standardization
organism for application in all countries, for example, the rules published by ISO
(International Organization for Standardization), IEC (International Electrotechnical
Commission), or ITU (International Telecommunication Union).

Regional

These are the technical standards established by a regional standardization organ-
ism for application in countries that belong to this region, such as the rules published
by CEN (European Committee for Standardization), CENELEC (European Com-
mittee for Electrotechnical Standardization), or COPANT (Pan American Standards
Commission).

National

These are technical standards established by a national standardization organism
for application in a given country. For example, in Brazil, Brazilian standards (NBR)
are prepared by ABNT (Brazilian Association of Technical Standards), in Germany
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by DIN (Deutsches Institut Fiir Normung), in England by BSI (British Standards
Institute), and in the United States of America by ANSI (American National
Standards Institute).

2.9.6.2 Technical Regulation

A technical regulation is a document a legal authority adopts to do so. It contains
mandatory rules and establishes technical requirements, either directly, by reference
to technical standards, or by incorporating their content, in whole or in part. In
general, technical regulations aim to ensure aspects related to health, safety, envi-
ronment, consumer protection, and fair competition. Compliance with a technical
regulation is mandatory, and non-compliance is illegible and punishable by the
corresponding punishment.

Sometimes, a technical regulation establishes the technical rules and requirements
for a product, process, or service and can also establish procedures for assessing
compliance with regulation, including compulsory certification.

Technical Regulations and International Trade

All countries issue technical regulations. Thus, when it is intended to export a
product for a particular market, it is essential to know if the product or service to
be exported is subject to a technical regulation in that country in particular.

The WTO Trade Technical Barriers Agreement establishes a series of principles
to eliminate unnecessary obstacles to trade, particularly technical barriers related to
standards, technical regulations, and compliance assessment procedures that can
make it difficult to access products to markets. One of the essential points of the
agreement is the understanding that the standards prepared by international stan-
dardization bodies (ISO or IEC) constitute the reference for global trade. The
agreement stipulates that, whenever possible, governments must adopt technical
regulations based on international standards, considering that technical barriers do
not constitute those who follow these rules.

Knowing a Little More...

Whenever a government decides to adopt a technical regulation that does not
follow an international standard, it should formally notify the other members
of the WTO at least 60 days in advance, a justification presented. Other WTO
members may request clarification and submit comments and suggestions to
the proposed regulation. This information is conveyed by the so-called
“Inquiry Points,” which are organizations designated by each of the WTO
members responsible for notifications of the regulation to be adopted by that
country and for receiving notifications made by other countries. Brazil’s
Inquiry Point is INMETRO.
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The following text reproduces the introduction of the Bilingual, English, and French

editions issued by BIPM and highlights the document’s importance (Fig. 2.25).

In general, a vocabulary is a “terminological dictionary which contains designations and
definitions from one or more specific subject fields” (ISO 1087-1:2000, 3.7.2). The present
Vocabulary pertains to metrology, the “science of measurement and its application.” It also
covers the basic principles governing quantities and units. The field of quantities and units
could be treated in many different ways. Clause 1 of this Vocabulary is one such treatment
and is based on the principles laid down in the various parts of ISO 31, Quantities and units,
currently being replaced by ISO 80000 and IEC 80000 series Quantities and units, and in

the SI Brochure, The International System of Units (published by the BIPM).

The second edition of the International vocabulary of basic and general terms in
metrology (VIM) was published in 1993. The need to cover measurements in chemistry
and laboratory medicine for the first time, as well as to incorporate concepts such as those
that relate to metrological traceability, measurement uncertainty, and nominal properties,
led to this third edition. Its title is now International vocabulary of metrology — Basic and
general concepts and associated terms (VIM), to emphasize the primary role of concepts in

developing a vocabulary.
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In this Vocabulary, it is taken for granted that there is no fundamental difference in the
basic principles of measurement in physics, chemistry, laboratory medicine, biology, or
engineering. Furthermore, an attempt has been made to meet the conceptual needs of
measurement in fields such as biochemistry, food science, forensic science, and molecular
biology.

Several concepts that appeared in the second edition of the VIM do not appear in this
third edition because they are no longer considered to be basic or general. For example, the
concept ‘response time,’ used in describing the temporal behavior of a measuring system, is
not included. For concepts related to measurement devices that are not covered by this third
edition of the VIM, the reader should consult other vocabularies such as IEC 60050,
International Electrotechnical Vocabulary, IEV. For concepts concerned with quality man-
agement, mutual recognition arrangements about metrology, or legal metrology, the reader
is referred to documents given in the bibliography.

The development of this third edition of the VIM has raised some fundamental questions
about different current philosophies and descriptions of measurement, as will be summa-
rized below. These differences sometimes lead to difficulties in developing definitions that
could be used across the different descriptions. No preference is given in this third edition to
any of the particular approaches.

The change in the treatment of measurement uncertainty from an Error Approach
(sometimes called Traditional Approach or True Value Approach) to an Uncertainty
Approach necessitated a reconsideration of some of the related concepts appearing in the
second edition of the VIM. The objective of measurement in the Error Approach is to
determine an estimate of the true value that is as close as possible to that single true
value. The deviation from the true value is composed of random and systematic errors. The
two kinds of errors, assumed to be always distinguishable, have to be treated differently. No
rule can be derived on how they combine to form the total error of any given measurement
result, usually taken as the estimate. Usually, only an upper limit of the absolute value of the
total error is estimated, sometimes loosely named “uncertainty.”

In the CIPM Recommendation INC-1 (1980) on the Statement of Uncertainties, it is
suggested that the components of measurement uncertainty should be grouped into two
categories, Type A and Type B, according to whether they were evaluated by statistical
methods or otherwise, and that they be combined to yield a variance according to the rules
of mathematical probability theory by also treating the Type B components in terms of
variances. The resulting standard deviation is an expression of a measurement uncertainty.
A view of the Uncertainty Approach was detailed in the Guide to the expression of
uncertainty in measurement (GUM) (1993, corrected and reprinted in 1995), which focused
on the mathematical treatment of measurement uncertainty through an explicit measurement
model under the assumption that the measurand can be characterized by an essentially
unique value. Moreover, in the GUM as well as in IEC documents, guidance is provided on
the Uncertainty Approach in the case of a single reading of a calibrated instrument, a
situation normally met in industrial metrology.

The objective of measurement in the Uncertainty Approach is not to determine a true
value as closely as possible. Rather, it is assumed that the information from measurement
only permits the assignment of an interval of reasonable values to the measurand, based on
the assumption that no mistakes have been made in performing the measurement. Additional
relevant information may reduce the range of the interval of values that can reasonably be
attributed to the measurand. However, even the most refined measurement cannot reduce
the interval to a single value because of the finite amount of detail in the definition of a
measurand.

The definitional uncertainty, therefore, sets a minimum limit to any measurement
uncertainty. The interval can be represented by one of its values, called a “measured
quantity value.”
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In the GUM, the definitional uncertainty is considered to be negligible concerning the
other components of measurement uncertainty. The objective of measurement is to establish
a probability that this essentially unique value lies within an interval of measured quantity
values based on the information available from measurement.

The IEC scenario focuses on measurements with single readings, permitting the inves-
tigation of whether quantities vary in time by demonstrating whether measurement results
are compatible. The IEC view also allows non-negligible definitional uncertainties.
The validity of the measurement results is highly dependent on the metrological properties
of the instrument, as demonstrated by its calibration. The interval of values offered to
describe the measurand is the interval of values of measurement standards that would
have given the same indications.

In the GUM, the concept of true value is kept for describing the objective of measure-
ment, but the adjective “true” is considered to be redundant. The IEC does not use the
concept to describe this objective. In this Vocabulary, the concept and term are retained
because of common usage and the importance of the concept.

[VIM—introduction].

2.11 Proposed Exercises

2.11.1 Analyze the following statement: “It is not necessary to calibrate a brand-new
instrument from a reputable and traditional manufacturer in the market because
the manufacturer guarantees its traceability.” Do you agree or disagree? Justify
your answer.

2.11.2 What is metrology?

2.11.3 Present some differences between scientific metrology and legal metrology.

2.11.4 What is the function of legal metrology in our society?

2.11.5 According to ISO 10012:2003, present five items should be included in the
records of metrological evidence processes.

2.11.6 What do you mean by “influence quantity”?

2.11.7 What is the leading world organism of legal metrology?

2.11.8 What does it mean for a laboratory to be accredited?

2.11.9 What is the difference between technical standards and technical regulation?

2.11.10 What is the importance of the international vocabulary of metrology (VIM)?
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Statistics Applied to Metrology S

3.1 Significant Digits of a Measure

The result of a calculation using all the calculator’s display digits implies that it is
accurate for all digits, a fact that, in practice, is rarely possible (the number of digits
can be increased considerably using computers).

When we use the measurement results from calculations, we must consider that
the numbers used have only a limited number of significant digits, because the
concepts of uncertainty, accuracy, resolution, and conversion of units are involved.

Suppose measurement 13.403 m indicates the most likely value of a quantity, and
the maximum variation in the measurement series to calculate this value is 0.04 m.
As this variation can be more or less, we must express the result of the measurement
as follows:

(13.403 £0.04) m

Analyzing the result, we note that the second decimal digit of the most likely
value is uncertain. Therefore, it is unnecessary to write the third decimal, since the
previous one is already uncertain.

The measurement result must be expressed as (13.40 + 0.04) m.

Of the considerations made, we can establish the concept of significant digits of a
measure.

Attention!

The significant digits of a measure are the digits considered correct, from the
first different from zero, plus the latter, which is regarded as the doubtful
significant digit.
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In the case presented, measure 13.40 m has four significant digits: 1, 3, and 4 are
considered correct significant digits, and zero is considered a doubtful significant
digit.

In every measurement, the last estimated digit will always be doubtful. This is
either because we will always doubt this value—after all, we must exhibit it—or
because the digital instrument “estimated” it for us.

Let us look at the following figure (Fig. 3.1).

The ruler is graduated in centimeters. If we look at the position of the arrow, the
value is 6.5 cm. Note that the digit five would be doubtful of the measurement. This
is because we cannot affirm that the arrow position is 6.5 cm. If the ruler had a lower
division of 0.1 cm, we could read 6.4 cm, 6.5 cm, or 6.6 cm, or if it had subdivisions
of 0.01 cm, we could read 6.48 cm, 6.49 cm, 6.50 cm, or 6.51 cm. Even so, the digits
8,9, 0, and 1 would be the doubtful. This is why a measurement will always have a
doubtful digit.

In the chapters on measurement uncertainty (Chaps. 5 and 6), we will see this
question in more detail and study how this reading limitation will imply the
appearance of a source of measurement uncertainty: the uncertainty of reading
resolution.

Example 3.1 Measurements and the Numbers of Significant Digits
(a) 23.50 m: four significant digits

(b) 0.0043 m: two significant digits

(c) 67 °C: two significant digits

(d) 127 V: three significant digits.

We must be careful when zero numbers are at the end of the numbers. If the
“zeros” are written correctly to correspond to significant numbers, 36.00 has four
significant digits, and 36.0 has three. In these two cases, zeros are necessary to define
the accuracy of the measurement.

To decrease ambiguities, we must observe the following rules on “zeros’:

Rule 1: Zeros are insignificant if situated to the left of the first significant digit.

Example: 0.023 kg (two significant digits).
The zeros on the left of digit two only express that the measurement result is less
than the unit (1 kg).

Rule 2: Right zeros should only be written when guaranteed significant.

Example: 0.12300 mm (five significant digits).
When a number ends in zeros on the right, these zeros may not necessarily be
significant. For example, 50,600 calories may have three, four, or five significant
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digits. Ambiguity can be avoided by using exponential or “scientific” standard
notation.

If the number of significant digits is three, four, or five, we could write 50,600
calories, such as: 5.06 x 10* calories (three significant digits)

5.060 x 10* calories (four significant digits)
5.0600 x 10* calories (five significant digits)

When writing a number in scientific notation, the number of significant digits is
indicated by the number of numerical digits in the term “digits,” as shown in the
examples.

Important
The power of ten is not considered a significant digit.

3.1.1 Number Rounding

When the measure has more significant numerals than you need, we should keep
only those necessary and abandon the others.

For example, measurement 34.527 m has five significant digits. If we have to
express it with only three, we should write 34.5 m. If we need four, we write
34.53 m.

In the latter case, we observed that the digit of the second decimal house went
from 2 to 3.

Here is the reason. If we had used 34.52 m, we would have made a mistake, for
lack of it, equal to (34.527 — 34.52) m = 0.007 m.

Using 34.53 m, we made a minor error, by excess, of:

(34.53-34.527) m=0.003 m.

When we round a number, we must keep in mind the following rules:

(a) The last digit of a number should always be added from a unit if the discarded
digit is bigger than five.
Examples of rounding to three significant digits:

1347 m=135 m
0.03432 mm =0.0343 mm
(b) If the discarded digit is equal to five, if there are any other numerals different

from zero after the discarded five, the last retained digit will be plus a unit.
Examples of rounding to three significant digits:
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14.751°C=14.8 ° C 0.0346501 km=0.0347 km

(c) If the discarded digit is five, if there are only zero or no other digit after five, the
last retained digit will be added to a unit only if it is odd.
Examples of rounding to three significant digits:

4.8350 N=4.84 N
3425 °C=342 °C

3.1.2 Operations with Significant Digits

We must act as follows in mathematical operations for the result of operations
containing significant digits only.

3.1.2.1 Addition and Subtraction

We usually add or subtract, and the operation result must have the same number of
decimal digits in the portion with the smallest number of decimal digits.

Example: Give the result of the sum (85.45 m + 5.6 m + 98.523 m) with the
correct number of significant digits.

Solution: Add the numbers and provide the result with the decimal digits in the
portion with the fewest digits.

85.45
5.6
+ 98.523

189.573

As the portion with fewer decimal digits is 5.6 (one decimal), adopting the sum
and subtraction rule present will result in 189.6 m.

3.1.2.2 Multiplication and Division

We usually multiply or divide, and the result must have the same number of
significant digits as the portion with the smallest number of significant digits.

Example: Give the result of the division of 89.1 m? by 5.4690 m, with the correct
number of significant digits.
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Solution: Divide and provide the result with the number of significant digits of the
portion with the smallest number of significant digits.

89.1 m?

Adopting the rule of multiplication and division, as 8§9.1 has only three significant
digits, the result of the division will be 16.3 m.

3.1.2.3 Square Root

The square root of a number with # significant digits can have significant digits at
most n and at least n — 1.

Example: v/25.5km

Since 25.5 km has three significant digits, we can represent the result as 5.05 or
5.0. The amount of significance used will depend on the accuracy of the calculation.

Example: (v/25.5+4.8) km= (5.0 +4.8) km=9.8 km.

(\/25.5 +4.81> km = (5.05 + 4.81) km=9.86 km.

3.1.3 Mixed Operations

When using a calculator, if you work all the long calculations without writing the
intermediate results, you may be unable to tell if an error has been made. In addition,
even if you realize there were any errors, you may be unable to say where it is. In an
extensive calculation involving mixed operations, as many digits should be
performed as possible in the entire set of calculations, and then the result should
be appropriately rounded.

For example: (5.00/1.235) m + 3.000 m + (6.35/4.0) m = (4.04858 + 3.000 + 1.5875)
m = 8.630829 m.

The first division should result in three significant digits. The last division should
result in two significant digits. The three added numbers should result in a number
with one digit after the decimal home. Thus, the correct rounded result must be
8.6 m. The last operation (division) limits this result’s accuracy.

Important

In an extensive calculation involving mixed operations, as many digits as
possible should be performed in the entire set of calculations, and then the
result should be appropriately rounded.
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Most modern calculators allow you to load the results of intermediate calculations
on the display by performing complex calculations. In doing so, it is possible to
maintain the results of each calculation step without inserting the intermediate results
(a practice that perhaps encourages rounding too early). This way, you can altogether
avoid truncation errors introduced by intermediate rounding.

Using all digits in the result can be critical for many mathematical operations in
statistics. Rounding intermediate results by calculating squares can seriously com-
promise their accuracy.

3.2 Concepts of Statistics Applied to Metrology

Here is a question: Why must we know the statistical tools to work in metrology?

It is well known that every measure performed has an associated measurement
uncertainty, which, depending on the type and quality of the instrument or system
used, can be small or large compared to the measurement’s result.

Thus, we can say that MR = X + U, where.

MR = measurement result.

X = measurement value (or the mean measurement) performed and.

U = uncertainty of the measurement.

In VIM—2.26, we find the following definition for measurement uncertainty:
“non-negative parameter characterizing the dispersion of the quantity values being
attributed to a measurand, based on the information used.” The VIM also cites that
“the parameter may be, for example, a standard deviation called standard mea-
surement uncertainty (or a specified multiple of it), or the half-width of an interval,
having a stated coverage probability.”

We realize, then, that measurement uncertainty is an evaluated parameter through
some statistical tools. As the result of measurement will always have an associated
doubt (called the uncertainty of measurement), what is sought is to estimate the
values of measure and uncertainty in the best possible way.

Measurement uncertainty will always exist and will never be eliminated, since the
actual value of greatness is estimated (in practice, the value of the standard is used as
areference value). However, it is possible to define the limits within which the value
of a measurement is found by considering a specific probability value using statis-
tical techniques and analyses.

Experimental measurements are carried out based on random experiments, and
random experiment means that which is influenced by non-controlled, random
variables. Thus, measurements are random experiments and can be repeated indef-
initely, and once repeated, we will probably obtain different results.

Random experiments are associated with a sample space or population. Popula-
tion N is defined as all elements available for evaluation. This population can be a
finite number (e.g., the total residents of a building) or infinite (e.g., the set of natural
numbers). A sample n represents a portion of the population, but it should be chosen
to present the characteristics and properly represent this origin population.
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After this measurement process is completed, a specific value will represent an
estimate of the measurement result. From the result of this sample and by attributing
a certain degree of confidence, one can analyze the behavior of the measuring
instrument as a whole. Conclusions obtained based on a sample or amount of data
streamline the measurement process and reduce costs.

Suppose we need to determine the density of a solid (p). It is known that the
density is the relationship between the mass of the body (m) and its volume (V),
given by the expression:

p= (3.1)

<I3

Then, when measuring the mass of the body with the aid of a scale, we have the
variable mass M as a random component since its value can be affected by the
position in which we place the body on the scale plate, besides the characteristic of
the scale itself not to reproduce the measured values repeatedly.

The same is valid for measuring the part’s volume. It is affected by the temper-
ature variation where its measurement is performed and by the instability of the
measurement instruments.

This is why statistical analysis is fundamental to metrology. It enables data
description from central trend measures, dispersal measures, and probability distri-
bution, followed by the analysis and interpretation of the obtained results.

Before we discuss the concept of uncertainty of measurement and present its
calculation methodology, it is necessary to introduce some basic statistics founda-
tions and tools.

3.2.1 Random Variable, Random Experiment, and Sample
Space

When we experiment with a measurement, we are subject to results that can be
influenced by variables we do not control. For example, the variation in ambient
temperature can influence the length of a metal part (dilation), or the relative
humidity of the air can affect the mass of a moisture-absorbing substance. Finally,
random variables in every measurement process can interfere or may interfere with
the measurement result.

Thus, such experiments have random variables, regardless of being careful with
the experiment, and we cannot avoid these influence variables. Our goal, then, will
be to understand, quantify, and model these types of variations that we often find in
measurements.

We can define a random experiment as anyone who provides different results,
even taking all the precautions to perform the measurement procedure similarly. The
set of all possible results of a random experiment is called the sample space of the
experiment.

These random variables can be divided into two types: discreet and continuous.
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3.2.1.1 Discreet Random Variable (Fig. 3.2)

One dice has x values (1, 2, 3, 4, 5, 6). The variable is discreet; it cannot assume
intermediate values. When we launch a dice, we will not find, for example, values
between 1 and 2 or between 4 and 5. A discreet random variable is a variable with a
finite number of values. Other examples are the number of wrinkles in a car, the
number of oranges in a basket, and the number of parts manufactured in one day.

3.2.1.2 Continuous Random Variable

For example, the room temperature of a laboratory (7)) measured over a week is
considered a continuous random variable, because it can take any value throughout
the day and week. Therefore, a continuous random variable assumes infinite values.
Examples include temperature measurement, pressure measurement, and electric
current measurement.

Note that the typical variables of interest in metrology are continuous. The most
commonly used continuous probability distributions in metrology are:

* Uniform or rectangular distribution.
* Triangular distribution.

* Normal or Gaussian distribution.

* Student’s t distribution.

This chapter will study these probability distributions and their main
characteristics.

Fig. 3.2 A dice

\“
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3.2.2 Distribution of Measured Data
3.2.2.1 Not Grouped Data

For example, the CEN-EN 837—1 standard states that the type Bourdon manometer’s
calibration temperature should be between (20 + 2) °C. Here, we have 80 measure-
ments performed over one day, and the results are found in Table 3.1.

Question: Are all measurements within the tolerance range established by the
standard?

Answer: Yes! After analyzing all 80 data points, it is clear that the lowest value
was 18 °C, and the largest was 22 ° C.

Let us ask other questions:

* What was the value that prevailed in the measurement set?

* Did measurements vary a lot or little?

* Have you ever thought that instead of 80 measurements, we had 8000?

* Do you agree that there should be a more appropriate way to dispose of this data
to facilitate answers?

3.2.2.2 Grouped Data

The immediate way is to group the data in a list. The list consists of grouping this
data increasingly or decreasingly. For the temperature example, we will put it in
ascending order of values (Table 3.2).

The list makes it easy to answer if the results are within tolerance. Just look at the
first (18 °C) and the last (22 °C), but it is not so immediate to answer the other
questions!

Table 3.1 Temperature measurements

19 21 20 21 19 20 19 19

20 o5 0 200 mas 1 a0 D
8 of (Tde |9 l4s a8
8 |4s 8 | el B
20 |48 |ag 3@ 4w 20 |l aE | A
%0 |19 @0 |7 3%z A
19 18 22 21 18 21 19 19
19 (19 (49 20 @ 18 2 2
1800 (799 0 [l o e e g s g
20 21 19 22 13 21 21 21
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Table 3.2 List of temperature measurements

18 18 18 18 18 18 18

18 18 18 18 18 18 18 19
19 19 19 19 19 19 19 19
19 19 19 19 19 19 19 19
19 20 20 20 20 20 20 20
20 20 20 20 20 21 21 21
21 21 21 21 21 21 21 21
21 21 21 21 21 21 21 21
21 21 21 22 22 22 22 22

2 2 2 2 2 2 2 @

Table 3.3 Simple absolute Value °C 1,

frequency (f,) 18 I
19 18
20 12
21 22
22 13
Y (sum) 80

Let us then group the data by value. This means ordering similar with similar, that
is, grouping equal values into classes by providing them in a table called a frequency
distribution.

There are four types of frequencies:

» Simple absolute frequency (f,)—corresponds to the number of occurrences of a
value within a class.

Table 3.3 shows that the predominant value was 21 °© C, which appeared 22 times!

* Accumulated absolute frequency (F,)—corresponds to the sum of the absolute
frequencies of the current class with the sum of the frequencies immediately
before it.

By this table it is observed that more than half of the data (45 of 80) are between
18 and 20 °C! (Table 3.4)

» Simple relative frequency (f,)—is the ratio between the absolute simple frequency
of the class and the sample size (n).
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Table 3.4 Accumulated Value °C £ F,

absolute frequency (F,) 18 15 15
19 18 33
20 12 45
21 22 67
22 13 80

Table 3.5 Simple relative Value °C £ £

frequency (f,) 18 15 18.75%
19 18 22.5%
20 12 15%
21 22 27.5%
22 13 16.25%
x 80 100%

Table 3.6 Accumulated rela- 10 °C £ £ F,

tive frequency () 18 15 18.75% 18.75%
19 18 22.5% 41.25%
20 12 15% 56.25%
21 22 27.5% 83.75%
22 13 16.25% 100%

fa
fr = ;

Table 3.5 shows that the values of 19 and 21 °C together represent 50% of the
values. The remaining 50% are distributed by 18, 20, and 22 °C.

* Accumulated relative frequency (F,)—corresponds to the sum of the relative
frequencies of the current class with the sum of the immediately preceding
relative frequencies (Table 3.6).

More than half of the data (56.25%) is between 18 and 20 °C!

3.2.2.3 Histogram

A histogram is a bar graph that shows a frequency distribution, that is, the table
where we present the data collected due to the frequency of its occurrence. The base
of a rectangle represents a class of the frequency table. The height of the bar is
proportional to the frequency value contained in the class. The horizontal scale of the
graph is quantitative. The vertical scale indicates the absolute or relative frequency.

This data must be divided into class intervals. An efficient method for determin-
ing the number of class intervals consists of obtaining the square root of the number
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Table 3.7 Oven temperature Temperature (°C)

49.59 49.60 49.63 49.64 49.66 49.68
49.59 49.61 49.63 49.65 49.67 49.68
49.59 49.62 49.63 49.65 49.67 49.68
49.59 49.62 49.64 49.65 49.67 49.69
49.60 49.62 49.64 49.66 49.67 49.69
49.60 49.62 49.64 49.66 49.67 49.69
49.60 49.62 49.64 49.66 49.67 49.69
49.60 49.62 49.64 49.66 49.67 49.70
49.60 49.62 49.64 49.66 49.67 49.70
49.60 49.63 49.64 49.66 49.68 49.70

of data collected. The number of class intervals will be approximately equal to the
value of this root. Class intervals should be equal wide to increase graphic informa-
tion in frequency distribution.

Solved Exercise 3.1
Consider Table 3.7 with 60 temperature values of a stabilized thermometer calibra-
tion oven around 50.00 °C.

When the variation in oven temperature reaches its stability, it generates uncer-
tainty in the thermometer calibration, called oven stability uncertainty.

Based on these measurement results, make your histogram.

Solution: Let us build the histogram using five steps.

Step 1: Determination of the measurement interval’s range R. The range measures
the dispersion between the minimum and maximum distribution values, not consid-
ering the intermediate values.

R=Xmnax - Xmin (32>
One feature of the range is that even though the number of measurements
increases, it does not decrease (may even increase). In this example, the range is
determined by:
R=(49.70-49.59)°C=0.11°C
Step 2: Class number C.

We determine the class C number by calculating the square root of the number of
measurements performed 7, therefore:

C=n=60="17.746 (3.3)

Thus, our histogram’s class number will be 7 or 8, depending on the size of each
class.
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Step 3: Width of classes L.
To determine the width of class L, we must divide the range R by the class number
chosen, C.

R
L= C (3.4)
Choosing C = 8:
L=21 g3
8
Choosing C = 7:
0.11
L= = =0.016

Note that both L values do not provide numbers with the same decimal places as
the measured data. It would be interesting if the width L provided us with values such
as 0.01 °C or 0.02 °C.

A proper technique in building histograms is to increase a small range R, so that
we begin to count the frequency of incidence of our values just before and shortly
after the beginning.

For example:

R=(49.71-49.58) °C=0.13 °C
Thus, the new value of L will be:

0.1

w

L= < =0.01625°C
L= 07£ =0.01857°C

So let us round out to L = 0.02 °C.

Step 4: Counting by class—frequency.

This is the penultimate stage, where we build a table relating the classes and their
frequency of occurrence. In this example, we have (Table 3.8):

Note that each class interval is “closed” (<) at the beginning and open (<) at the
end. This is important so that the end value of the interval is not counted more
than once.

Step 5: Histogram graph.

At this stage, we selected the class interval and their frequency and set up a bar
chart, for example, using Microsoft® Excel software.
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Table 3.8 Class interval and  ~(Jaes interval Frequency
the frequency 49.58 °C < x < 49.60 °C 4

49.60 °C < x < 49.62 °C 8

49.62 °C < x < 49.64 °C 1

49.64 °C < x < 49.66 °C 1

49.66 °C < x < 49.68 °C 15

49.68 °C < x < 49.70 °C
49.70 °C <x < 49.71 °C

Histogram I

49.58-49.60 49.60-49.62 49.62-49.64 49.64-49.66 49.66-49.68 49.68-49.70 49.70-49.71
Temperature intervals (°C)

Frequency
= = = =
A o o O N ~ O

N

Graph 3.1 Stabilized oven temperature distribution histogram

The same Excel also automatically makes the histogram by selecting the data and
clicking on the histogram in the data tab within the data analysis icon (Graph 3.1).

Note that the mean oven temperature is worth 49.64 °C and is in the middle of the
frequency distribution in the histogram.

This is a feature of most statistical distributions, as we will see later in this
chapter.

3.2.3 Probability Density Function (PDF)

One probability density function f{x) describes the distribution of a random variable
x. If a value x is very likely to occur within an interval [a, b], its PDF f{x) will be
significant in this interval. The PDF f(x) then describes the probabilities associated
with a random variable.

The PDF f{x) may be discreet or continuous, depending on whether the variable
x is discrete or continuous.
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Fig. 3.3 Standard caliber.
(https://www.calibratools.
com.br)

3.2.3.1 Discrete Density Function

A discrete PDF describes the behavior of the variables that provide integer and finite
values.

Example I: It is very common to use measurement devices called calibers, which
inform whether one piece conforms or not. Variable X then has only two values:
pass/do not pass or go/do not go (Fig. 3.3).

The discrete PDF that characterizes the example well is the Binomial
Distribution.

A binomial distribution is adequate when the results of a random variable are
grouped into only two classes or categories. These categories must be mutually
exclusive. For example, a manufactured product may be perfect or defective, an
answer may be correct or wrong, and a telephone call is local or long distance.

Even continuous variables can be divided into two categories. For example, a
car’s speed may be below or above the legal limit on a road. These categories are
usually called success or failure.

Application conditions:

» They are made in independent repetitions of the experiment, that is, the result of
repetition is not influenced by others.
» The probability of success p and failure (1 — p) remain constant in all repetitions.

The following expression gives the binomial model:

n'

P(x):mpx(l—p)"ﬂ x=0,1,....n (3.5)
Mean — y =np (3.6)
Standard deviation — o=+/np(1 —p) (3.7)

The binomial model is usually used in quality control when sampling a large
population. In these applications, x represents the number of defective observations
in a n-sample.
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Table 3.9 Discreet Value of X Probability p(X)
uniform PDF 1/6
1/6
1/6
1/6
1/6
1/6

AN AW N =

Another interesting statistic is the defective fraction of a sample:

P (3.8)

2
o5 = (3.9)
Example 2: Consider a dice whose values of X are (1, 2, 3, 4, 5, 6). When
launching it, the probability of obtaining any of the values of X is p(X) = 1/6.
Thus, the PDF p(x) of this discreet variable is (Table 3.9):
The PDF that characterizes the example well is the Discreet Uniform.
The following equations define the discreet uniform distribution:

P(X:x):%, X1, X2, ..., Xk (3.10)
k
Mean — y = Zk'x’ (3.11)
lec(xt*ﬂ)z

Standard deviation — o= (3.12)

In the case of launching the dice, we will have:

P(X:x):l x=1,2,3,4,5,6
3.5

6
> IR F“x};‘”)z— \/z’;(xi6—3,5)2_ 171

=
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Graph 3.2 Discreet p(x)
uniform PDF

1/6

3.2.3.2 Continuous Density Function

For a continuous random variable x, a PDF f(x) is such a function that:

fx)=0
+00

F@= [ ) de=1

Pla<X<b)= / e

In Graph 3.3, the area under f{x) represents the probability of x assuming a value
between a and b (Graph 3.3).

k k 2 k 2
D DL 6:\/EI(X;<—/4) :\/Zl(xzé—&ii) =1,71

k

For a discrete random variable X, the sum of the discrete distribution P(x) values
between the boundaries —co and +oo always results in one.
Remembering the example of the dice, the sum of P(x) will be:

1 1 1, 1 1 1
P(—0 <X< 4+ o0 ):P(1§X§6):6+6+6+6+6+6:1

3.2.4 Mean and Standard Deviation of a Probability
Distribution

Probability distributions are characterized by their mean value and their standard
deviation. When the mean in question is the population’s mean, we designate the
Greek letter p. When it comes to the mean of a sample, we designate by X.
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Graph 3.3 Probability P (a < X < b)

The mean (u), or expected value E(X), is the best estimate of a measurement and
is defined by the equation:

p—E(X) = / o (V) (3.13)

where X is a random variable, and f(x) is a PDF.

Although the mean sample or the mean population is valid, it is important to
know how dispersed the data around the mean is. The variable that measures the
dispersion of these data around the mean is called standard deviation, and its square
is known as variance.

The variance of X is denoted by ¢” or V(X) and defined by the expression:

o =v(x) = E(((v~ EW)?) = / (4 — ) (x)dx (3.14)

3.2.5 Distributions of Probabilities More Adopted
in Metrology

We mention, in Sect. 3.2.1, that the most commonly used probability distributions in
metrology are uniform or rectangular, triangular, normal or Gaussian, and
Student’s t.
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Now, let us study the main features of these distributions and their applications in
metrology.

3.2.5.1 Rectangular or Uniform Distribution

We will face a uniform or rectangular distribution when the probability distribution
is constant in a defined interval (Graph 3.4).

flx)= ; a<x<b (3.15)

fx)=0 x<a ou x>b.

The mean of a uniform continuous random variable x is defined by Eq. (3.13):
u=EX)= [x flx)dx

Integrating within the limits between a and b and adopting f(x) = ﬁ, we have:
b R b
X X
/ b—adx* 2(b—a)
a a
p=z=212 (3.16)
2
Using the variance definition by Eq. (3.14), we have:
7= [—rwn
F
1
&)=
a b %

Graph 3.4 Uniform or rectangular distribution
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—a
a 2(b 2
0_2: (X_Tb) _ (b_a) (3 17)
3(b—a) 12 ’
a
Since standard deviation is the square root of variance, so we have:
b—a b-—a
c=s(x)= = 3.18
(x) NG (3.18)

We adopted the expression s(x) for the sample standard deviation and the
expression o(x) for the population standard deviation. In the case of a uniform
distribution, the same equation gives the result.

Solved Exercise 3.2

Suppose the value of the mass of an object is 25.9 g and that the digital scale used for
this measurement has a reading resolution of 0.1 g. This means that the scale reads
increments of 0.1 g in 0.1 g. Considering the existing algorithm in the digital scale,
responsible for digitizing the indicated values, the “true value” of the mass will be
comprised between interval 25.85 g and 25.95 g. Values such as 25.96 g or larger
shall be rounded by the instrument to 26.0 g, just as values such as 25.84 g or smaller
to 25.8 g.

Based on this information, the mean and standard deviation of this distribution
will be determined.

Solution

Considering that the scale has a reading limitation of 0.1 g (resolution), we know that
every time the instrument indicates 25.9 g, we will doubt the “true value” of the mass
in question caused by its limitation of resolution. Considering that the probability
that the “true value” is between 25.85 g and 25.95 g is the same within this interval, it
is reasonable to adopt a statistical distribution that reflects this behavior, that is,
rectangular or uniform distribution. In Graph 3.5, we have:

Note the area under the graph is 1, as expected. Thus, the mean will be:

a+b 25.85425.95
2 2

xX= g=259¢

The standard deviation is calculated by Eq. (3.18):

b—a 2595-25.85

WER T un

¢=0.0288675 g



3.2 Concepts of Statistics Applied to Metrology 83

area=1
1 1
f0) = Gsos—2585)5 ~ 017
25.85¢g 259¢ 2595g X
Graph 3.5 Statistical distribution of Solved Exercise 3.2
Graph 3.6 Statistical 3
distribution of Solved aZD'( Cu)
Exercise 3.3 1
i
I
i
1
i
1
1
: i
16.12 16.52 16.92 * (x10°°CY)

We will see further that this result is considered the uncertainty of reading
resolution of the instruments with rectangular distribution.

Solved Exercise 3.3 (Source ISO GUM 2008)

A manual provides the value of the linear thermal expansion coefficient of pure
copper at 20 °C [ayo(Cu)] as 16.52 x 10~% °C~! and establishes that the error in this
value should not exceed +0.40 x 10 °C™",

Based on this limited information, it is not absurd to suppose that the value of
a20(Cu) will be distributed with equal probability in the interval of 16.12 x 1076°C™
10 16.92 x 107%°C ™', and it is doubtful that a»o(Cu) is out of it (Graph 3.6).

The standard deviation of this symmetrical rectangular distribution of possible
values of a,o(Cu) is:

(16.92 —16.12)x10 %°C~!  0.80x10 °°C !
23 23

Standard deviation from a uniform distribution, adopted as a dispersion measure
for the copper thermal expansion coefficient variation, is a reasonable estimate of
standard uncertainty.

s(a20) = =0.23x10 ¢ °C!
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3.2.5.2 Symmetrical Triangular Distribution

When the probability distribution is more prominent in the central part, at a defined
interval, and decays linearly at the ends, we will face a triangular distribution.

In many cases, it is more realistic to expect values near the boundaries to be less
likely than those near the midpoint. Replacing the rectangular distribution with a
symmetrical triangular distribution is reasonable (Graph 3.7).

0 para x<a
4()6——(12) para as_xsw
(b—a) 2
FO=3 4p—) a+b (3.19)
W para stb
—a
0 para x>b

For triangular distribution with the mean X at the center of interval a, b, we have:

ﬂ:x:“;b (3.20)

and the standard deviation is:

b—a b—-a
V24 2V6
We adopted the expression s(x) for the sample standard deviation and the

expression o(x) for the population standard deviation. The same equation gives the
standard deviation in a triangular distribution.

o(x) =s(x) =

(3.21)

Solved Exercise 3.4

Suppose we calibrate a pressure gauge with a measurement interval (0 to 40) bar and
a resolution of 1 bar using a comparative pump and fix the calibration points on the
object gauge at 10 bar, 20 bar, 30 bar, and 40 bar (Fig. 3.4).

Graph 3.7 Symmetrical f(x)
triangular distribution
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Fig. 3.4 Pressure gauge
calibration. (Photo by the
authors)

These values are fixed to present a greater probability of occurrence than any
other. For example, for a point 30 bar, the “true value” of the pressure will be
understood at 29.5 bar at 30.5 bar. Values such as 30.5 bar (or larger) will be rounded
to 31 bar, just as values such as 29.4 bar (or smaller) to 29 bar. Consider the
probability that the “true value” is higher at point 30 bar than at any other point,
because we set this value. Based on this information, determine this distribution’s
mean and standard deviation at point 30 bar.

Solution

Considering that the “true value” probability is higher at point 30 bar than at any
other point because we fix this value, it is reasonable to adopt a statistical distribution
that reflects this behavior, that is, the triangular distribution.

In Graph 3.8, we have:
Let us calculate the mean and the standard deviation:

a+b _ 295+305

= > bar =30.0 bar

XxX=

:b—a: 30.5-29.5
Vi vn

The standard deviation is considered the uncertainty of the reading resolution of
the instruments with triangular distribution.

Solved Exercise 3.5: Based on Eurachem Guide [5] (Fig. 3.5)

s(x) bar = 0.04167 bar

A solution’s total volume (V) is measured by filling a 100 ml balloon. The
balloon manufacturer informs that it has a volume of (100 + 0.1) ml, measured at
20 °C.
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f(x)

2
f6) = Zos —295par - 200"

area=1
& |
© 295bar 30bar 30.5 bar

X

Graph 3.8 Statistical distribution of Solved Exercise 3.4

Fig. 3.5 100 ml balloon

100 ml

Considering the little information available, the Eurachem Guide considers it
more realistic to expect the values close to the limits to be less likely than near the
midpoint.

Therefore, it recommends assuming a triangular distribution for this source of
input, ranging from 99.9 ml to 100.1 ml, with an expected value of 100.0 ml.

~100.1—99.9

S mL =0.04 mL
1% N
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3.2.5.3 Asymmetrical Triangular Distribution

In an asymmetrical triangular distribution, the value with the highest probability is
the mode of the dataset, which is not equal to the average. So, when the probability
distribution is higher in mode, in a defined interval, and decays linearly at the ends,
we will be facing an asymmetrical triangular distribution (Graph 3.9).

2(x—a) <ye
(b—a)(c—a) a=r=e
2
fx)={ b—a x=c = (mode) (3.22)
2(b—x)
<
b-ab-o  *=h
0 x<aex>b
The mean and standard deviation expressions for this distribution are:
= %b"‘c (3.23)
2 2 2 _ab—ac —
o_:\/a +b° 4+ c?*—ab—ac—bc (3.24)
18
The probabilities accumulated for this distribution are:
r_z.(x;a),._. a < xX<c
2 (b-a)(c—-a) -
b-a
2
—— x = c= (mode)
fo={ "™
2(b-x)
-0 c<x=<bh
\0 x<aex>hb

a % c b

Graph 3.9 Asymmetrical triangular distribution
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Graph 3.10 Asymmetrical
triangular distribution of
Solved Exercise 3.6.

a=10°C. b =30 °C. E%
c=25°C

(x—a)’
b—)(c—a) asxse
P() =4 x=c (3.25)
— (b—x)2 c<x
b-ab-o =

Solved Exercise 3.6

Consider that in a set of measurements, the lowest value found was 10 °C, the largest
was 30 °C, and the mode was 25 °C. What is the probability that a new measurement
is less than 20 °C? What is the probability of being greater than 26 °C?

Solution (Graph 3.10)

 (x—a® 20-10°
P&<2®_{b7@@fay_oofmxxgqm‘”s&”w%

(b—x)? L (30 —26)*

b—a)b—c) (30 — 10)(30 — 25) —=0.84 — 84%

P(x>26)=1-—

3.2.5.4 Normal or Gaussian Distribution

Normal or Gaussian distribution is undoubtedly the most important PDF. Several
variables behave according to a Gaussian distribution.
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Graph 3.11 Normal or
Gaussian distribution f[x}

Gauss based the errors theory on postulates. One concern is that “the most likely
value of quantities, measured several times, is the arithmetic mean of the measures
found, provided they deserve the same confidence.”

Graph 3.11 represents a Gaussian or normal probability distribution. It has the
classic form of a bell where the center is the mean u, and the width of its base
represents the dispersion of values ¢ around the average.

The normal distribution has a PDF defined by:

—)?
flx)= ! e 22 ; —0o <x< oo (3.24)
oV 2n

where ¢ corresponds to the population standard deviation and has the equation:

(3.25)

p=1_ (3.26)

The mean and standard deviation are fundamental characteristics of any statistical
distribution. The mean indicates the most likely value, and the standard deviation is
the scattering of these values around the mean.

Suppose you have to measure the length of an object with a simple ruler and write
down the result. Ask others who repeat the measurement, without each one, to know
about the results obtained by others, and write down all the results. You will observe
that the measurements differ. Repeat the measurement ten times, and you will
probably find some different results. This fact is called dispersion of measurement.

As its name implies, the dispersion of the values found in a measurement
statistically evaluates the degree of spreading these values around the mean. The
higher the dispersion, the more away values around the mean distribution are found.
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£(x) T

—3c 20 -1l p —1lo 20 3o
[-68.27%-|

Graph 3.12 Probabilities associated with standard deviations in a normal distribution

In a normal distribution, 68.27% of the results will be dispersed around the mean
for a standard deviation (1), 95.45% for two standard deviations (2¢), and 99.7%
for three standard deviations (30). The intervals mentioned are shown in Graph 3.12.

We rarely know the entire population in metrology, because we do not perform
infinite measurements. In this case, the standard deviation of the sample (s) is
adopted, calculated by the equation:

(3.27)

where X is the sample mean, and # is the sample size.

For example, the measures deserve the same confidence if performed by the same
observer using the same instrument and method. A question arises: What is the
convenient number of measurements to realize?

This number varies from case to case, but in practice, an interval of three to ten
measurements is adopted. Below three measurements, errors may not be well
represented, and above ten, the measurement process can become costly.

The sample variance s° is the square of the sample standard deviation, given by
the expression:

> (F—x)
st = ‘nfl (3.28)
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Graph 3.13 Probabilities associated with standard deviations in a standardized normal distribution

The variance is used in calculating measurement uncertainty, because it is a
variable that can be combined linearly, that is, we can add the variances of different
distributions, not the standard deviations.

Example: Considering the variance of a sample equal to 3 and another sample
equal to 4, determine the variance resulting from this sum and its standard deviation.

Solution: s> =s7 +s3=3+4=17

The resulting standard deviation will be: s = V2= V7 =2.646

which is different from the direct sum of the deviations.

V34+VE=173+2=373%£V7

A normal distribution’s mean and standard deviation can assume any values. A
simplified mathematical model solves the complexity of the normal distribution,
creating a standardized normal distribution.

Any variable can be transformed into variable Z, whose value is the difference
between variable x and the mean, divided by standard deviation.

z=2"F# (3.29)

g

In a standardized normal distribution, the average () assumes zero value, and the
standard deviation (o) assumes a value of one. Thus, the probability distribution
function assumes the following conformation, as shown in Graph 3.13.

The total area under the curve corresponds to 100%. Each half has 50% of the
total area. After transforming the normal curve into the standard normal curve, it
assumes the same form as normal distribution, with average ¢ = 0 and standard
deviation ¢ = 1.

The probabilities of standardized normal distribution can be obtained in
Table 3.10.
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Graph 3.14 Rectangular
distribution p(x)
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In statistics, there is a theorem that is applied in metrology. It is known as the
Central Limit Theorem. [GUM—G2]

It says: “The more random variables are combined, even though they have
different statistical distributions, the closer to a normal distribution will be the
result of this combination of variables.”

Let us exemplify this theorem.

Consider the launch of a dice. The probability distribution for this event is a
rectangular distribution (Graph 3.14).

Let us now consider the launch of two dice. The probability distribution of this
event approaches a triangular distribution (Graph 3.15).

Let us now consider the launch of three dice. The probability distribution of this
event approaches a normal distribution (Graph 3.16).

For this reason, in metrology, we treat the final result of combining the various
sources of uncertainty as a normal distribution, even though these sources have
different statistical distributions. The sum of these influences results in a normal
distribution behavior.

Consider the uncertainty calculation in the calibration of an analog pressure
gauge. In it, we find several sources of uncertainty that will be estimated (the best
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Graph 3.16 Normal
distribution

3 45 6 789 101112131415161718

estimate of the various sources of measurement uncertainties is the standard devia-
tion of each source). Sources can come from multiple distributions, such as:

* Variation of pressure gauge reading and discharge (hysteresis)—uniform
distribution.

* Variation of measurements performed by the pressure gauge (repeatability
uncertainty)—Student’s t distribution.

* Influence of standard measurement uncertainty used in the calibration of the
gauge—normal distribution.

+ Influence of object gauge resolution when we “set” its value in the calibration at a
defined point—triangular distribution.

The final uncertainty, from the various sources of uncertainty mentioned above,
according to the central limit theorem, will be a normal distribution.

One consequence of the central limit theorem is the fact that if we remove several
samples of size n and calculate their averages &1,x2, ..., Xp), where p is the number
of samples and n the sample size, we will have for the standard deviation of the mean
the expression given by the equation:

(3.30)

where 7 is the number of measurements.

The standard deviation of the mean is of great importance in metrology because
without having to do infinite measurements, we can estimate the standard deviation
between the means of various samples of the same population. ISO GUM considers
the standard deviation of the mean to be Type A uncertainty, if the sample belongs to
the same population. Otherwise, Type A uncertainty will be equal to the standard
deviation of the sample (s).
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Fig. 3.6 Johann Carl
Friedrich Gauss
(1777-1855)

The higher the number of measurements of the same measure, the closer their
values will behave as a normal distribution. Infinite measurements will have a
normal distribution.

Important
The standard deviation from the mean represents the dispersion between the
averages of the samples belonging to the same population.

Knowing a Little More... (Fig. 3.6)
(https://cdn.britannica.com/27/190027-050-A9A35298/Carl-Friedrich-Gauss-
engraving.jpg)

He was one of the biggest names in the contemporary era of mathematics,
having made significant contributions to astronomy and physics. Coming from
a humble peasant family with illiterate parents, Gauss had already shown ease
with numbers from the early years of life, even before he was literate. At the
age of seven, challenged by his teacher to sum up the digits of 1 to 100, he
reached the response of 5050 in a few seconds, stating the hitherto unknown
formula of arithmetic progression. Although with strong resistance from his
father, Gauss followed his studies, which he had been encouraged and funded
since his youth by Buttner, director of the school where he studied, and Carl
Wilhelm Ferdinand, Duke of Braunschweig. Impressed with Gauss’s poten-
tial, the Duke funded his course at the University of Gottingen.

He elaborated on the minimum square method and also worked on the
theory of numbers, the theory of elliptical functions, electromagnetism, and
gravitation, among other topics. He reached a remarkable reputation in Europe
and became a university professor, having written several works. If it had not
been for the influence of Buttner and Duque Ferdinand on Gauss’ trajectory,
perhaps the genius theorems and laws of mathematics would not have come to
light as they were stated. Gauss is known as the prince of mathematics.


https://cdn.britannica.com/27/190027-050-A9A35298/Carl-Friedrich-Gauss-engraving.jpg
https://cdn.britannica.com/27/190027-050-A9A35298/Carl-Friedrich-Gauss-engraving.jpg
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3.2.5.5 Student’s T Distribution

When we perform a small number of measurements, less than 30, we realize that
even when the sample belongs to a normal distribution, its histogram does not take
the shape of a bell, typical of this distribution.

To visualize this feature, we randomly generate in Excel 1000 values belonging to
a normal distribution of population average ;¢ = 2.00 and standard deviation of the
population ¢ = 0.40.

From this population (let us consider that the data generated are large enough to
be viewed as the population), we remove sample sizes n = 5, n = 20, n = 100, and
n = 1000. Our goal is to build histograms of different samples and observe their
behavior.

3.2.5.6 Sample Analysis with N = 5 (Graph 3.17)

The result found was x=2.09 and s=0.43

Interval Frequency
1.5 1
1.8 0
2.1 1
2.4 1
More 2

Note that although the values are removed from a normal distribution with a mean
of 2.00 and a standard deviation of 0.40, the mean of the five values is worth 2.09
and a standard deviation of 0.43. This is because we only get a mean of 2.00 and a
deviation of 0.40, when we have all the values that generated the normal curve
(infinite values).

Graph 3.17 Data and
histogram to n = 5 Histogram 1
T 4
S 2
< 15 18 21 24 more
interval
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Graph 3.18 Data and

histogram to n = 20 Histogram 2

8
o)
5 6
5 4
g 2
=g
11 14 17 2.0 2.3 2.7  more
interval

Another essential feature is that the histogram containing the five values does not
look like a normal distribution (bell form). This will only happen as the sample
number approaches the population number.

3.2.5.7 Sample Analysis with N = 20 (Graph 3.18)

The result found was x=1.97 and s=0.44

Interval Frequency
1.1
14
1.7
2.0
2.3
2.7
More

[\SHE SRIENRRUSEEV B RN

3.2.5.8 Sample Analysis with N = 100 (Graph 3.19)

The result found was x=2.05 and s=0.36

Interval Frequency
1.1 1
1.4 2
1.6 8
1.8 13
2.1 32
23 17

(continued)
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Graph 3.19 Data and
histogram to n = 100

Graph 3.20 Data and
histogram to n = 1000

40

g 30

1]
= |

c
20
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Histogram 3

1.1 14 16 18 21 23 25 27 more

interval

frequency

Histogram 4

———
06 09 1.2 15 18 21 24 27 3.0 33 3.6 more

interval

Interval

Frequency

2.5

16

2.7

8

More

3

3.2.5.9 Sample Analysis with N = 1000 (Graph 3.20)

The result found was x=2.00 and s=0.40

Interval Frequency
0.6 1
0.9 5
1.2 23
1.5 90
1.8 200
2.1 277

(continued)
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Interval Frequency
2.4 258

2.7 105

3.0 36

33 3

3.6

More 0

We realize that the distribution tends to form a normal distribution as the number
of measurements increases. In practice, if n is 30, we can consider the approximation
with the normal curve.

As demonstrated, many high measurements (n > 30) are required to obtain a
distribution close to normal. As it is not always feasible to perform 30 measurements
of the same measurement, we must apply a correction factor, bringing the distribu-
tion of small values closer to normal.

This factor, known as a Student’s t factor for statistics and coverage factor k for
metrology, is a function of sample size n, or the number of degrees of freedom, and
probability p. In metrology, it was normalized to consider the probability of 95.45%
for calculating measurement uncertainty.

The chemist and mathematician William Gosset, who signed his work with the
pseudonym Student, developed the Student’s t factor, or coverage factor k. Around
the late nineteenth century, William Gosset developed the Student’s t distribution.
The basic idea was to correct the factors that would multiply standard deviations for
small measurements. As we saw in Graph 3.13 for a standard deviation (+20), we
have a probability of 95.45% to find the measurements scattered around the mean.
This is true for infinite measurements. As in practice, we do three, four, and five
measurements; it is necessary to multiply the standard deviation by a factor greater
than two.

Table 3.11 presents the coverage factor for various probabilities. This table can be
built in Excel© using the function INV.T.BC. You must choose the degree of
freedom you want and the probability coverage, remembering that the probability
used should be 100% less than the desired probability (level of significance). For
example, if we wish 95.45% probability, we must insert the value of 0.0455 (4.55%)
in the probability field.

Considering the previous example, where the mean population is ¢ = 2.00, and its
standard deviation is ¢ = 0.40 for n = 1000 values, we can check, for various values
of n (5; 20; 100 ...), which the mean population will always be understood in the
interval:

X+k-s(x) (3.31)

k is the coverage factor, and s(X) is the standard deviation of the mean.

Analyzing Table 3.12 and Graph 3.21, we can see that the higher the number of
measurements, the lower the interval where we will find, with a defined probability,
the mean of the population.
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3.36
3.34
3.33
3.32
3.30
3.29
3.28
3.00

2.81
2.80
2.79
2.78
2.77
2.76
2.76
2.58

2.11
2.11
2.11
2.10
2.10
2.09
2.09
2.00

2.07
2.06
2.06
2.06
2.05
2.05
2.05
1.96

1.71
1.71
1.71
1.71
1.70
1.70
1.70
1.64

1.32
1.32
1.32
1.31
1.31
1.31
1.31
1.28

1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.04

1.02
1.02
1.02
1.02
1.02
1.02
1.02
1.00

0.69
0.68
0.68
0.68
0.68
0.68
0.68
0.67

23

24
25

26
27

28

29

24
25
26
27
28

29
30

Table 3.11 (continued)

3 Statistics Applied to Metrology
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Table 3.12 Data interval to X + ks (¥)
95.45% probability n ¥ s s()?) k 95.45%
5 2.09 0.43 0.19 2.869 (2.09 + 0.55)
20 1.97 0.44 0.10 2.140 (1.97 £ 0.21)
100 2.05 0.36 0.04 2.026 (2.05 + 0.08)
_n=5
n=2
0 n =100
p=2 2091 T I 2.0a9 N =1000
1.965 2.002
Graph 3.21 Dispersion around the mean with 95.45% probability
Table 3.13 Resistance R (Q)
measurements ] 1998
2 200.0
3 200.1
4 200.4
5 199.5
6 200.0
7 200.5
8 199.9

Note: In measurements, we call the mean population its true value, which we

cannot determine in practice, since we cannot measure infinite times.

Solved Exercise 3.7

Eight electrical resistance measurements were made in resistor R, and the following

values were found (Table 3.13).

Considering the distribution of this sample as belonging to a normal distribution,

determine the following:

(a) The mean.
(b) The sample standard deviation.
(c) The standard deviation of the mean.
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(d) The interval in which we have a 95.45% probability of finding the mean of the
measurements.

Solution
(a) Mean

p= Zn]x,- —200.0 Q.

(b) Standard deviation

n/— 2
LilE=9"_ 3106 0.

$= n—1

(c) Standard deviation of the mean

s@® === = 2390 _ 119905

vno V8

(d) To find the interval in which we have 95.45% of all measured values, we must
determine the Student’s t distribution value, equivalent to the coverage factor k
found in the calibration or testing certificates.

To this, we must verify in Table 3.2 the corresponding value of k for the degree of
freedom, v = n — 1. Inourcase, v =8 — 1 =7 — k will be 2.43 to 95.45%
probability.

Thus, the interval will be given by Eq. 3.31:

X+ks(X) — 200.0+2.43x0.112995 =200.0 +0.281922
(200.0+0.3) ©

This result informs that we have a 95.45% probability of making eight more
measurements, and the new mean is between 199.7 and 200.3 Q.
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Fig. 3.7 William Gosset.
(Photo: public domain)

Knowing a Little More... (Fig. 3.7)

William Gosset (1876—1937).

The older son of Agnes Sealy Vidal and Colonel Frederic Gosset, he was
educated in Winchester. In the New College Oxford, where he studied chem-
istry and mathematics, he obtained a first-class diploma in both sciences, being
graduated in mathematics (1897) and chemistry (1899). Gosset obtained a post
as a chemist at the Guinness Brewery in Dublin (Ireland) in 1899. Working at
the brewery, he did important work in statistics. In 1905, he studied at the
University College laboratory in London. He developed works in Poisson
limit, mean sample distribution, standard deviation, and correlation coeffi-
cient. Later, he published three critical works on his accomplishments during
the year he was in the laboratory.

Many people are familiar with the name Student but not with the Gosset.
William Gosset signed with the pseudonym Student, which explains why his
name can be less known than his significant statistics results. He invented the
t-test to manipulate small samples for quality beer manufacturing control.
Gosset discovered the form of t-distribution by combining mathematical and
empirical work with random numbers, an initial application of the Monte
Carlo method.

From 1922, he slowly built a small statistics department at the brewery,
directing it until 1934. In late 1935, Gosset left Ireland to take over the new
Guinness brewery in London. Despite the hard work involved in this venture,
he continued to publish statistics articles. He died in 1937.
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3.3 Proposed Exercises

3.3.1 Round correctly to one decimal digit.

(a) 34.450 m
(b) 23.852 m
@) 8351 m
(d) 19.7489 m
(e) 43.4501 m
(f) 43.852 m
(g) 523511 m
(h) 66.7205 m.

3.3.2 Check the number of significant digits in the following measurements:

(a) 1.320 m
(b) 0.050 kg
(¢) 0.0001 km
(d) 9642 m?.

3.3.3 Round correctly to three significant digits.

(a) 4789 m
(b) 642.5 kg
(c) 1234 L
(d) 56.150 cm.

3.3.4 Perform the following operations and present the result with the number of
correct significant digits:

(a) 52.69 m + 36.8 m
(b) 68.487 m x 0.12 m

V478 m?2 —1.36 m

3.3.5 Round for one significant digit.

(a) 3682
(b) 0.00245

(c) 0.00058763
(d) 0.000030456.
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Table 3.14 Voltage values Voltage (V)

2.01 2.15 2.40 2.56 2.75 291
2.01 2.17 242 2.59 2.76 291
2.01 2.19 2.44 2.63 2.77 2.93
2.05 2.20 2.44 2.63 2.80 2.93
2.09 2.25 2.44 2.64 2.80 2.93
2.10 2.26 2.45 2.65 2.80 2.94
2.10 2.26 2.52 2.70 2.81 2.95
2.11 2.27 2.53 2.71 2.84 2.96
2.13 2.33 2.55 2.74 2.84 2.98
2.14 2.34 2.55 2.74 2.86 2.99

3.3.6 Perform the following operations and present the result with the number of
correct significant digits:

(a) 37.76 + 3.907 + 226.4

(b) 319.15 — 32.614

(c) 104.630 + 27.08362 + 0.61
(d) 125 — 0.23 +4.109

(e) 2.02 x2.5

(f) 600.0/5.2302

(g) 0.0032 x 273

(h) (5.5)°

(1) 0.556 x (40 — 32.5)

(j) 45 % 3.00

(k) What is the mean value of the five time measurements in seconds?

0.1707 s | 0.1713 s 0.1720 s 0.1704 s 0.1715 s

1) 3.00 x 10° — 1.5 x 10°.

3.3.7 Consider the 60 Voltage (Table 3.14) values belonging to a uniform distribu-
tion, make the histogram, and determine the mean and standard deviation.

3.3.8 Table 3.15 represents the temperature measurements, in Celsius degree, of a
laboratory over a morning. Make the histogram of these values considering a
normal distribution. Also, the mean and the standard deviation should be
determined.
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Table 3.15 Temperature
measurements

Temperature (°C)

23.6 23.8 24.0 24.0 24.1 24.2
23.6 23.8 24.0 24.0 24.1 242
23.7 23.8 24.0 24.0 24.1 242
23.7 23.8 24.0 24.0 242 242
23.7 23.8 24.0 24.1 24.2 24.3
23.7 23.9 24.0 24.1 24.2 24.3
23.7 23.9 24.0 24.1 24.2 24.3
23.7 23.9 24.0 24.1 242 243
23.8 23.9 24.0 24.1 242 24.5
23.8 24.0 24.0 24.1 24.2 24.6

Table 3.16 Voltage values Voltage (V)

128.42 128.62 128.69 128.75 128.80 128.84
128.49 128.63 128.69 128.76 128.80 128.87
128.49 128.63 128.71 128.76 128.80 128.88
128.56 128.65 128.72 128.77 128.81 128.89
128.57 128.65 128.72 128.77 128.82 128.90
128.58 128.66 128.73 128.77 128.83 128.91
128.59 128.66 128.74 128.78 128.83 128.93
128.59 128.66 128.74 128.79 128.83 128.94
128.60 128.67 128.75 128.80 128.83 129.01
128.61 128.69 128.75 128.80 128.83 129.11

3.3.9 A standard block manufacturer manual for calibration of calipers and micro-
meters provides the value of the blocks’ linear thermal expansion coefficient (a)
as 11.5 x 10°° °C~'. It also informs that the maximum variation of the linear
expansion coefficient is +0.2 x 107® °C~!. Based on this information and
considering that the linear thermal expansion coefficient (@) is distributed with
equal probability, determine the standard deviation from the probability distribu-
tion of the linear thermal expansion coefficient ().

3.3.10 Table 3.16 presents 60 voltage values obtained from an electrical outlet of the
metrology laboratory. Based on these values, do what you are asked.

(a) A histogram of these values. Adopt seven classes to build it better.

(b) Determine the sample standard deviation.

(c) Determine the interval with a 95.45% probability of finding a measurement
between the 60 measurements.

(d) Check how many values are within the interval determined in item © and
make sure these values correspond to 95.45% of the measured values.

(e) Determine the interval with 95.45% probability where we can find the mean
of 60 measurements.
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Table 3.17 Scales values
Scale 1 (kg) 15.00 14.80 15.20 14.90 15.10 14.70
Scale 2 (kg) 14.60 14.70 15.40 15.30 14.90 14.90
Table 3.18 pH values pH
7.24 7.20 7.23 7.25
7.24 7.21 7.26 7.24
7.24 7.24 7.24 7.24

3.3.11 Consider the following samples (Table 3.17) taken from weighing lots of two

distinct scales:

(a) Calculate the mean of the two samples.

(b) Calculate the standard deviation of the two samples.

(c) Based on previous items, which scale has the highest dispersion of
measurements?
(d) Determine, for each scale, the interval where we have a 95.45% probability of
finding the mean of the measurements.

3.3.12 Consider that the pH monitoring of a substance over one day has a triangular
distribution. Based on the 12 values measured (Table 3.18) throughout this day,

calculate:

(a) the mean,

(b) the standard deviation.

3.3.13 A metrology technician measured the internal temperature of a greenhouse,
finding that the mean of the eight measurements performed was 48.9 °C and the
standard deviation equal to 0.6 °C. Considering the measured values belonging to
a Student’s t distribution, determine the probability of the following measurement

being between:

(a) 48.3 and 49.5 °C
(b) 47.4 and 50.4 °C
(c) 46.2 and 51.6 °C.



Chapter 4 )
Measuring Systems s

4.1 Measurement: Forms of Realization

Measurements can be carried out in two ways: direct and indirect. In this section, we
will address these two modalities and their particularities.

4.1.1 Direct Measurement

Direct measurement occurs when only a quantity is involved in the process, and the
instrument is used directly to obtain the desired measurement result.
Some examples of direct measurements:

+ Diameter measurement of a cylinder with a Vernier caliper

* Weighing an object with a scale

* Measurement of the electric current of a circuit with an ammeter
* Pressure indication using a Bourdon-type pressure gauge.

4.1.2 Indirect Measurement

It occurs when measurements involve one or more related quantities through a
mathematical equation.
Examples:

» Determination of the area (A) of a rectangular terrain measuring the length of
each of its sides L1 and L2. We adopted the expression: A = L1 x L2,
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Fig. 4.1 Electric circuit |

N

* Determination of the electric current (I) of a simple circuit, measuring resistance
(R) and the electrical potential difference (V). We adopted the expression: I = V/R
(Fig. 4.1).

Each measurement method has different metrological characteristics. The proper
choice of measurement (direct or indirect) enables the closest result to the desired.

For example, we can measure the density (p) of a liquid using a float densimeter
(direct method), or we can, by the indirect method, measure the mass () and the
volume of the liquid (v) and apply the relationship p = m/v.

Knowing a Little More... (Fig. 4.2)

The float densimeter is an instrument to measure the density of liquids.
Among its utilities is to determine the properties of liquids by inspecting their
density, especially when liquids are mixtures of substances. Thus, we can see
if the composition of the mix is expected or not from the expected value for the
density of the mixture. There are several ways to set up this apparatus, but the
most common is a long closed glass tube at both ends, broader at its bottom,
and narrower at its top. We must immerse the whole instrument in a container
filled with the liquid from which the density is desired until it fluctuates freely.
The principle of buoyancy (which is the force that makes the bodies float),
revealed by Archimedes, is the basis of the densimeter.

In direct measurement, we use only one instrument, densimeter, whereas in
indirect measurement, we need a balance and a glass of known volume. Regarding
density value, both methods should have similar results, but the final uncertainty of
each process may be significantly different.

Thus, the choice of method should evaluate the existence of error and the
uncertainty of measuring the result.
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Fig. 4.2 Float densimeter.
(https://http2.mlstatic.com)

4.2 Metrological Characteristics of Measurement Systems

Measurement systems have several metrological characteristics described in the
International Vocabulary of Metrology. In this section, we will highlight the most
usual.

4.2.1 Indication Interval

According to VIM—4.3, the indication interval is:

Set of quantity values bounded by extreme possible indications.

NOTE 1 An indication interval is usually stated in terms of its smallest and greatest
quantity values, for example, “99 V to 201 V.”

NOTE 2 In some fields, the term is “range of indications”


https://http2.mlstatic.com

114 4 Measuring Systems

Fig. 4.3 Clinical
thermometer. (https:/
pixabay.com/vectors/
clinical-thermometer-
fever-153666)

Fig. 4.4 Manometer.
(https://pixabay.com/
photos/manometer-oil-
mine-extraction-863210/)

Examples:

(a) Clinical thermometer: indication interval (35 to 42) °C (Fig. 4.3).

(b) Pressure gauge: indication interval (0 to 1) MPa (Fig. 4.4).


https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/photos/manometer-oil-mine-extraction-863210/
https://pixabay.com/photos/manometer-oil-mine-extraction-863210/
https://pixabay.com/photos/manometer-oil-mine-extraction-863210/

4.2 Metrological Characteristics of Measurement Systems 115

Fig. 4.5 Digital
multimeter. (https://pixabay.
com/vectors/device-electric-
electronics-measure-129601
/)
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4.2.2 Measuring Interval (Working Interval)

The VIM—4.7 is defined as:

Set of values of quantities of the same kind that can be measured by a given measuring
instrument or measuring system with specified instrumental measurement uncertainty under
defined conditions.
NOTE I In some fields, the term is “measuring range” or “measurement range”
NOTE 2 The lower limit of a measuring interval should not be confused with the
detection limit

The measurement interval is lower or, at most, equal to the indication interval and
can be obtained in manuals, technical standards, or calibration reports.

Example 4.1

The 3 ' digit digital multimeter (Fig. 4.5) measures continuous electrical voltage
with an indication interval of (0 to 1000) V. However, this interval is subdivided into
the following measurement intervals: (0 to 200) mV; (0 to 2000) mV; (0 to 20) V;
(0 to 200) V; and (0 to 1000) V.


https://pixabay.com/vectors/device-electric-electronics-measure-1296017/
https://pixabay.com/vectors/device-electric-electronics-measure-1296017/
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Fig. 4.6 Manometer:
vacuum and positive
pressure. (https:/pixabay.
com/photos/pressure-meter-
engineering-gauge-
2113401/)

4.2.3 Range of a Nominal Indication Interval

The VIM—4.5 defines the range as follows:

Absolute value of the difference between the extreme quantity values of a nominal indication
interval.

EXAMPLE: For a nominal indication interval of —10 V to +10 V, the range of the
nominal indication interval is 20 V.

NOTE Range of a nominal indication interval is sometimes termed “span of a nominal
interval.”

Example 4.2
Note that the working interval of the gauge shown in Fig. 4.6 is (—100 to 500) kPa,
but its measurement range is:

Range = [500 — (— 100)] kPa=600 kPa

4.2.4 Division of Scale (Not in VIM)

It is the difference between the scale values corresponding to two successive marks.
The unit scheduled on the scale expresses the value of a division, whatever the unit
of the measurement (Fig. 4.7).


https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
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Fig. 4.7 Clinical
thermometer with division
of scale equal to 0.1 °C.
(https://pixabay.com/
vectors/clinical-
thermometer-fever-153666)

Fig. 4.8 Manometer with
division of scale equal to
10 kPa and resolution of

5 kPa. (https://pixabay.com/
photos/pressure-meter-
engineering-gauge-
2113401/)

4.2.5 Resolution of a Displaying Device

The VIM—4.15 defines it as the “smallest difference between displayed indications
that can be meaningfully distinguished.”

The operator should evaluate the reading resolution in systems with analog dials
(Fig. 4.8).


https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
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Fig. 4.9 Analog Vernier
caliper with resolution of
0.0125 inch. (https://
pixabay.com/photos/
vernier-caliper-measuring-
instrument-452987/

Figure 4.8 shows a gauge (vacuum and positive pressure) with a 10 kPa scale
division. To determine the instrument resolution, we must answer the following
question: What is the lowest reading value I can achieve?

Answer: If the pointer is between two consecutive strokes and can read, we can
consider a resolution of 5 kPa. Otherwise, we must consider the resolution equal to
the value of the division, 10 kPa. In this example, we can admit a resolution of 5 kPa
and the indicated value of —15 kPa.

Defining this gauge’s reading resolution as 2.5 kPa would be difficult. This would
only be possible if we could “with the naked eye” divide the value of a division into
four parts!

The resolution of a display device will always be the slightest difference between
indications that can be significantly perceived. That is the lowest value that can
safely be read in a measurement.

We should not assume that the reading resolution is lower than it is. We must
recognize the instrument’s sensitivity for proper choice.

Important

1. Resolution will always be the slightest difference between indications that
can be significantly perceived and will never be less than the instrument’s
sensitivity.

2. Resolution on a digital display device will be the lowest variation of this
dial, that is, its digital increase.

Example 4.3
A caliper’s resolution is calculated as the ratio between the value of a division on the
fixed scale and the number of nonius, or Vernier, divisions (Fig. 4.9).


https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
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Fig. 4.10 Joao Pedro
Nunes. (http://ensina.rtp.pt/
site-uploads/2017/05/pedro-
nunes-667x376.jpg)

Pedro Nunes
(1502:1578)

A caliper with 0.1 division inches on a fixed scale and a nonius with eight
divisions have a resolution of 0.0125 inches. Even using a magnifying glass and
expanding the scale view, we continue with a resolution of 0.0125 inches.

Knowing a Little More... (Fig. 4.10)

Where does nonius come from?

This measurement device was one of the inventions of this Portuguese,
born in Alcacer do Sal. It has worked in numerous areas, such as moral,
metaphysical, and logical philosophy, since its formation in medicine in
1525. He became a cosmographer in 1529 by King D. Jodo III and, in 1544,
began to teach at the University of Coimbra. Nonius served to measure grade
fractions in two nautical instruments at height, the astrolabe and the quadrant.
Pierre Vernier perfected the base concept of this instrument, allowing its broad
diffusion in the eighteenth century (Fig. 4.11)—Source: Adapted from pt.
wikipedia.org.

Born in Ornans, France, this geometry and manufacturer of scientific
instruments learned mathematics and science from his father, a lawyer and
engineer of the Spain Government Chancellery. He acted as an engineer in the
fortifications of various cities. His work in cartography resulted in the creation
of numerous instruments, such as the Vernier caliper (1631), similar to the
nonius of Jodo Pedro Nunes, to measure the length accurately, using two
graduated scales that slid in parallel, one of which provides exact subdivisions
of a division of the other scale. His most famous publication, La Construction,
l'usage, et les propriétés du quadrant nouveau de mathématiques (1631),

(continued)


http://pt.wikipedia.org
http://pt.wikipedia.org
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Fig. 4.11 Pierre Vernier
(1580-1637). (https:/
alchetron.com/cdn/pierre-
vernier-7b642191-a050-4c1
7-8bd2-7deal8d3bbl1-
resize-750.jpeg)

-

ol 30

Knowing a Little More... (Fig. 4.10) (continued)
describes his invention of a senior board and a method to determine the angles
of a triangle with its known sides.

Source: Adapted from https://www.biografias.es/famosos/pierre-vernier.
html.

4.2.6 Sensitivity of a Measuring System

According to VIM—4.12, the sensitivity of a measuring system is:

Quotient of the change in an indication of a measuring system and the corresponding
change in a value of a quantity being measured.

NOTE 1 Sensitivity of a measuring system can depend on the value of the quantity being
measured

NOTE 2 The change considered in the value of a quantity being measured must be large
compared with the resolution

Example 4.4

(a) A Pt-100 type platinum resistance thermometer has a sensitivity of 0.38 Q/°C,
that is, each one °C stimulus in temperature causes a variation in the electrical
resistance of the Pt-100 of 0.38 ohm.

(b) An electrode’s sensitivity for pH measurement shall be 59.16 mV/pH, that is,
one pH variation in the substance should generate 59.16 mV of electrode output
variation.

(c) A type K thermocouple must have a sensitivity of 39.5 mV/°C, and a type J
thermocouple must have a 50.4 mV/°C.


https://www.biografias.es/famosos/pierre-vernier.html%3e
https://www.biografias.es/famosos/pierre-vernier.html%3e
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4.2.7 Stability of a Measuring Instrument

According to VIM—4.19, it is:

Property of a measuring instrument, whereby its metrological properties remain constant in
time

NOTE: Stability may be quantified in several ways.

EXAMPLE 1 In terms of the duration of a time interval over which a metrological
property changes by a stated amount

EXAMPLE 2 In terms of the change of a property over a stated time interval

In Table 4.1, we present an example of the analysis of the stability of the temperature
of a liquid calibration bath at a point close to 60 °C. This bath has a measurement
range between 50 °C and 300 °C.

The stability of a bath is the variation of its temperature at a given point after the
bath goes into thermal equilibrium. Since no instrument is stable, this investigation
will verify how much the calibration bath temperature oscillates after it is fixed at a
given value. In this example, the desired value is 60 °C.

Table 4.1 Calibration bath temperature values at point 60 °C

Time | Temperature | Time | Temperature  Time | Temperature

(s) (°C) (s) °C) (s) (°C)
0

59.65 1201 59.67 2402 59.69
60 59.68 1261 59.67 2462 59.62
120 59.67 1321 59.68 2522 59.67
180 59.68 1381 59.77 2582 59.68
240 59.72 1441 59.69 2642 59.67
300 59.64 1501 59.69 2702 59.68
360 59.68 1561 59.71 2762 59.74
420 59.67 1621 59.63 2822 59.72
480 59.68 1681 59.72 2882 59.68
540 59.67 1741 59.69 2942 59.70
600 59.69 1801 59.73 3002 59.76
661 59.63 1861 59.66 3062 59.69
721 59.67 1921 59.66 3122 59.69
781 59.68 1981 59.70 3182 59.70
841 59.67 2042 59.72 3242 59.73
901 59.67 2102 59.69 3303 59.68
961 59.71 2162 59.71 3363 59.67
1021 59.68 2222 59.71 3423 59.76

1081 59.67 2282 59.67 3483 59.76
1141 59.69 2342 59.66 3543 59.69
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Analysis of calibration bath stability at point 60 ° C
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Graph 4.1 Analysis of calibration bath stability at point 60 °C

For this analysis, we collected the bath temperature values for one hour at time
intervals of one minute. We use a resistance thermometer (Pt-100 four wires)
connected to a 6 % digit multimeter.

Note that after one hour of analysis, the highest temperature value is 59.77 °C,
and the smallest is 59.62 °C. We can conclude that the stability (E) of the calibration
bath, after the thermal equilibrium at point 60 °C, was:

E=(59.77-59.62) °C=0.15 °C

Graph 4.1 demonstrates the temperature variation of the calibration bath when it
is stable at around 60 °C.

4.3 Errors in Measurement Systems

When we calibrate a measurement instrument, we set a comparison between
the values obtained by the calibration instrument and the values provided by the
standard. Some metrological characteristics obtained in this comparison are the
errors and trends of the instruments. In this section, we will address these definitions
and their applications.
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4.3.1 Measurement Error

The VIM—2.16 defines measurement error as follows:

Measured quantity value minus a reference quantity value.
NOTE 1 The concept of ‘measurement error’ can be used in both

(a) when there is a single reference quantity value to refer to, which occurs if a calibration
is made by means of a measurement standard with a measured quantity value having a
negligible measurement uncertainty or if a conventional quantity value is given, in
which case the measurement error is known, and,

(b) if a measurand is supposed to be represented by a unique true quantity value or a set of
true quantity values of negligible range, in which case the measurement error is not
known.

NOTE 2 Measurement error should not be confused with production error or mistake

Then, the error is:
E=X-Ryv (4.1)

where E = measurement error; X = measured value; and Ry = reference value.
Usually, the reference value is attributed to the value of the standard.
Mathematically, the measurement error can be positive or negative. A positive

error denotes that the instrument measurement is greater than the reference value,

and a negative error denotes that the measurement is less than the reference value.

Important
When we do more than one measurement at the same point and get different
values for error, we adopt the largest of these values as the measurement error.

Solved Exercise 4.1

Four voltage measurements were performed using a voltmeter. The values found
were 127.5 V, 127.6 V, 127.5 V, and 127.4 V. Knowing that the reference value is
127.68 V, determine the voltmeter measurement error.

Solution
The measurement error is given by Eq. (4.1). Therefore, we will have:

E1=(127.5-127.68) V= —0.18 V
E2=(127.6-127.68) V= —0.08 V
E3=(127.5-127.68) V= —0.18 V
E4=(127.4-127.68) V= —028 V
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Since the voltmeter has four error values, we will adopt the value of the most
significant measurement error (in absolute terms).

E=—-028V=—-03V

Important

The measurement error result will be —0.3 V, since we must round it to the
same number of decimal digits as the instrument reading from which we are
determining the measurement error.

4.3.2 Instrumental Bias and Correction
4.3.2.1 Instrumental Bias

The definition of VIM—4.20 for instrumental bias is “average of replicate indica-
tions minus a reference quantity value.”

We should not confuse instrumental bias with measurement error. The instru-
mental bias determines the instrument’s average measurement error.

B=X-R, (4.2)

B = instrumental bias; — X = mean of measurements; and R, = reference value.

Solved Exercise 4.2
Determining the instrumental bias of Solved Exercise 4.1, we have (Table 4.2):

B=(1275-127.68) V= —0.18 V
B=—-02V

Important

The result of the bias will be —0.2 V, since we must round the result to the
same number of decimal digits as the instrument reading from which we are
determining the instrumental bias.

Table 4.2 Measurements

Measurements (V) Mean (V) Reference value (V)
and mean 127.5 127.5 127.68

127.6

127.5

127.4
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4.3.2.2 Correction

According to VIM—2.53, we have the following definition for correction:

Compensation for an estimated systematic effect.

NOTE 1 See GUM:1995, 3.2.3, for an explanation of ‘systematic effect’

NOTE 2 The compensation can take different forms, such as an addend or a factor, or
can be deduced from a table

Correction is equal to the bias with a changed signal and must be added to the value
of indications to compensate for the systematic effect.

In Solved Exercise 4.2, the correction would be +0.2 V, and the value of the
corrected voltmeter measurement would be (127.5 + 0.2) V = 127.7 V.

4.3.3 Instrumental Drift

The VIM—4.21 defines instrumental drift as:

Continuous or incremental change over time in indication due to changes in metrological
properties of a measuring instrument.

NOTE: Instrumental drift is related neither to a change in a quantity being measured nor
to a change of any recognized influence quantity.

It is widespread for an instrument of measurement to vary its metrological properties,
such as measurement uncertainty and measurement error, over time. For this reason,
we must verify the periodicity of these variations and perform calibrations in the
measuring instruments at smaller intervals than their instrumental drift.

To verify the stability of a measurement instrument, we analyze your calibration
certificate over two or more consecutive calibrations. We keep the calibration
certificates from one period to another (usually from year to year) and compare
their uncertainties, trends, and measurement errors.

Solved Exercise 4.3
An analytical scale, class I, with a resolution of 0.1 mg, was calibrated, and the table
data for its calibration certificate were obtained (Table 4.3).

Table 4.3 Calibration results

Calibration results

Indication (g) Standard (g) Object (g) Bias (mg) Uncertainty (mg) k

20 20.000011 20.0000 0.0 0.2 2.01
40 40.000028 40.0000 0.0 0.3 2.00
70 70.000021 70.0003 0.3 0.3 2.02
100 100.000010 100.0001 0.1 0.3 2.01
120 120.000021 120.0001 0.1 0.4 2.01
150 150.000020 150.0001 0.1 0.4 2.00
220 220.000041 220.0003 0.3 0.5 2.00
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Table 4.4 Data from the certificate

Indication (g) Standard (g) Object (g) Bias (mg) Uncertainty (mg) k

20 20.000005 20.0000 0.0 0.2 2.00
40 40.000022 40.0000 0.0 0.4 2.01
70 70.000051 70.0005 04 04 2.01
100 100.000006 100.0001 0.1 04 2.00
120 120.000018 120.0001 0.1 0.5 2.02
150 150.000014 150.0001 0.1 0.5 2.02
220 220.000011 220.0004 0.4 0.5 2.02

Table 4.5 Instrumental Drift

Indication Bias (mg) Bias (mg) Drift
(2 (year 1) (year 2) (mg)
20 0.0 0.0 0.0
40 0.0 0.0 0.0
70 0.3 0.4 0.1
100 0.1 0.1 0.0
120 0.1 0.1 0.0
150 0.1 0.1 0.0
220 0.3 0.4 0.1

A year later, it was calibrated again. Table 4.4 shows data from the certificate.
Determine the instrumental drift from the scale one year to the next.

Solution
We must subtract the trend values between two consecutive years to determine the
instrumental drift from the balance from one year to another. See Table 4.5.

4.3.4 Maximum Permissible Measurement Error

The VIM—4.26 definition is:

Extreme value of measurement error, with respect to a known reference quantity value,
permitted by specifications or regulations for a given measurement, measuring instrument,

or measuring system.
NOTE 1 Usually, the term “maximum permissible errors” or “limits of error” is used

where there are two extreme values
NOTE 2 The term “tolerance” should not be used to designate ‘maximum permissible

error’
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Example 4.5

The standard CEN EN 837-1 Pressure Gauges—Part 1: Bourdon Tube Pressure
Gauges—Dimensions, Metrology, Requirements, and Testing defines the following
maximum permissible errors for analog manometer concerning its measurement
range, such as:

* Class 0.1—maximum error of 0.1 %.

* Class 0.25—maximum error of 0.25 %.
* C(lass 0.6—maximum error of 0.6 %.

e Class l—maximum error of 1.0 %.

e Class 1.6—maximum error of 1.6 %.

e Class 2.5—maximum error of 2.5 %.

4.3.5 Hysteresis (Not in VIM)

Hysteresis (H) is the most significant difference, in absolute value, of the charge (C)
values (measurement made when applying an increasing signal in value) and (D)
discharge (measurement made when applying a decreasing signal in value) of a
measurement instrument.

H=|C -D| (4.4)

Hysteresis is a typical phenomenon in mechanical instruments, with a source of
error, especially clearances and deformations associated with friction. Examples of
instruments that may present hysteresis errors are scales, dynamometers, and analog
gauges.

Solved Exercise 4.4

When calibrating a pressure gauge, we determine its hysteresis by charging (increas-
ing pressure) and discharging (decreasing pressure). Table 4.6 shows the result of
one calibration cycle. Determine the gauge’s hysteresis at each point.

Solution
Table 4.7 shows how we can determine hysteresis at each point from the previous
data by subtracting the charge and discharge values (in absolute value).

The pressure gauge hysteresis will be at its highest value: 0.2 bar.

Table 4.6 Result of one calibration cycle

Value read in gauge (bar) Charge read in standard (bar) Discharge read in standard (bar)

10 9.9 10.0
20 19.9 20.1
30 30.0 30.0
40 40.2 40.1

50 50.3 50.1
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Table 4.7 Hysteresis

Value read in Charge read in Discharge read in Hysteresis
gauge (bar) standard (bar) standard (bar) (bar)
10 9.9 10.0 0.1
20 19.9 20.1 0.2
30 30.0 30.0 0.0
40 40.2 40.1 0.1
50 50.3 50.1 0.2

4.3.6 Measurement Accuracy and Precision

These concepts may be the metrological characteristics with the most application
mistakes. It is common for people to change the definition of accuracy with that of
precision. It became common sense to call a precise measurement when referring to
an exact measurement.

This section will define these terms and check their correct application.

4.3.6.1 Measurement Accuracy

The VIM—2.13 presents the following definition of measurement accuracy:

Closeness of agreement between a measured quantity value and a true quantity value of a
measurand.

NOTE 1 The concept ‘measurement accuracy’ is not a quantity and is not given a
numerical quantity value. A measurement is said to be more accurate when it offers a
smaller measurement error

NOTE 2 The term “measurement accuracy” should not be used for measurement
trueness and the term “measurement precision” should not be used for ‘measurement
accuracy’, which, however, is related to both these concepts

NOTE 3 ‘Measurement accuracy’ is sometimes understood as the closeness of agree-
ment between measured quantity values that are being attributed to the measurand.

The true value would be obtained by a perfect measurement (which does not exist),
being, by nature, indeterminate. Since the true value is indeterminate, it is used the
conventional quantity value [VIM—2.12]:

Quantity value attributed by agreement to a quantity for a given purpose.

EXAMPLE 1 Standard acceleration of free fall (formerly called “standard acceleration
due to gravity”), g, = 9.806 65 m-s?

EXAMPLE 2 Conventional quantity value of the Josephson constant, Kjq9 =
483,597.9 GHz V!

EXAMPLE 3 Conventional quantity value of a given mass standard, m = 100.003 47 g

NOTE 1 The term “conventional true quantity value” is sometimes used for this concept,
but its use is discouraged

NOTE 2 Sometimes a conventional quantity value is an estimate of a true quantity value
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NOTE 3 A conventional quantity value is generally accepted as being associated with a
suitably small measurement uncertainty, which might be zero

Or the reference quantity value [VIM—S5.18]:

Quantity value used as a basis for comparison with values of quantities of the same kind.
NOTE 1 A reference quantity value can be a true quantity value of a measurand, in

which case it is unknown, or a conventional quantity value, in which case it is known
NOTE 2 A reference quantity value with associated measurement uncertainty is usually

provided with reference to

(a) a material, e.g., a certified reference material,

(b) a device, e.g., a stabilized laser,

(c) a reference measurement procedure,

(d) a comparison of measurement standards.

Thus, considering the value of a measurement standard such as the “conventional
value,” the instrument’s accuracy is related to its ability to present the measurement
results as close as possible to the value of this standard.

Measurement accuracy is not a quantity and is not given a numerical quantity value. A
measurement is said to be more accurate when it offers a smaller measurement error.
[VIM—2.13 NOTE 1]

4.3.6.2 Measurement Precision

The definition in VIM—2.15 for measurement precision is:

Closeness of agreement between indications or measured quantity values obtained by
replicate measurements on the same or similar objects under specified conditions.

NOTE 1 Measurement precision is usually expressed numerically by measures of
imprecision, such as standard deviation, variance, or coefficient of variation under the
specified conditions of measurement

NOTE 2 The ‘specified conditions’ can be, for example, repeatability conditions of
measurement, intermediate precision conditions of measurement, or reproducibility condi-
tions of measurement (see ISO 5725-1:1994)

NOTE 3 Measurement precision is used to define measurement repeatability, interme-
diate measurement precision, and measurement reproducibility

NOTE 4 Sometimes “measurement precision” is erroneously used to mean measurement
accuracy

4.3.7 Measurement Precision X Measurement Accuracy

The following example is a “classic of metrology,” but we consider it the simplest
and fastest way to visually convey the concepts of precision and accuracy.

Consider four people (A, B, C, and D) who shoot ten times at the same distance as
the target. The results of the shots are shown in Fig. 4.12.
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Fig. 4.12 Precision x Accuracy

Table 4.8 Precision x Shooter Accuracy Precision
Accuracy A High High

B Good Low

C Low High

D Low Low

Shooter A hit almost every shot in the center of the target, demonstrating good
accuracy (distance from the average shot from the center of the target) and reason-
able accuracy (low shot dispersal).

Shooter B showed a very large spreading around the center of the target, but the
shots are approximately equidistant in the center. The scattering of the shots stems
directly from their low precision when analyzed individually. Still, when we observe
the average position of the shots, which coincides approximately with the position of
the center of the target, this reflects good accuracy.

Shooter C’s shots are concentrated, with low dispersion, but away from the center
of the target. This indicates low accuracy and high precision.

Shooter D, besides presenting a vast spreading, failed to make the “center” of the
shots near the center of the target. This shooter has low accuracy and precision.
Table 4.8 presents a summary of this analysis:

Shooter A is the ideal. Comparing B, C, and D, we can consider shooter C the best
because although none of the shooter’s shots hit the center of the target, its spread is
very small (high precision). If the shooter’s target C is corrected, he will get a
condition close to that of A, which we can never get with B and D.

Important

Accuracy is not as critical as precision, since calibration can determine and
correct it. Precision is also determined by calibration but cannot be corrected.
It can be proved that its influence on the mean value is reduced in the
proportion of 1/ 4, in which 7 is the number of repetitions of the measurement
considered in the mean calculation.
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4.3.8 Accuracy Class

The definition of accuracy class is as follows:

Class of measuring instruments or measuring systems that meet stated metrological require-
ments that are intended to keep measurement errors or instrumental measurement uncer-
tainties within specified limits under specified operating conditions.

NOTE 1 An accuracy class is usually denoted by a number or symbol adopted by
convention

NOTE 2 Accuracy class applies to material measures. [VIM—4.25]

Example 4.6

(a) According to Mercosur standard NM 215: 2000, a Class 1 standard block may
have a variation in its length L (in mm) of + (0.05 + 0.5 x 107°L) (m) /year).

(b) According to the recommendations of OIML, the standard masses used in the
calibration of scales are classified in the accuracy classes El, E2, F1, F2, M1,
and M2. A mass of 100 mg, for example, presents, by accuracy class, the
following maximum permissible errors (Table 4.9):

4.4 Repeatability and Reproducibility

The measurement result is intrinsically linked to these definitions. We can only
compare results that meet the conditions of repeatability or reproducibility.

4.4.1 Repeatability Condition of Measurement

According to VIM—2.20, the repeatability condition of measurement is:

Condition of measurement, out of a set of conditions that includes the same measurement
procedure, same operators, same measuring system, same operating conditions, and same
location, and replicate measurements on the same or similar objects over a short period of
time.

NOTE 1 A condition of measurement is a repeatability condition only with respect to a
specified set of repeatability conditions

NOTE 2 In chemistry, the term “intra-serial precision condition of measurement” is
sometimes used to designate this concept

Table 4.9 Maximum per-

Ssibl Jues for th Accuracy class Maximum error
missible error values for the Class E1 £0.005 mg
mass of 100 mg

Class E2 +0.015 mg
Class F1 +0.05 mg
Class F2 +0.15 mg
Class M1 +0.5 mg
Class M2 +1.5 mg
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4.4.2 Measurement Repeatability

The VIM—2.21 presents the following definition of repeatability of measurement:
“measurement precision under a set of repeatability conditions of measurement.”

4.4.3 Reproducibility Condition of Measurement

Again, the VIM—2.24 presents the following definition for the reproducibility
condition of measurement:

Condition of measurement, out of a set of conditions that includes different locations,
operators, measuring systems, and replicate measurements on the same or similar objects.
NOTE [ The different measuring systems may use different measurement procedures
NOTE 2 A specification should give the conditions changed and unchanged, to the extent
practical
Measurements in reproducibility conditions are very common in exports, as it is not
possible for the same operator in the same place, following the same measurement
system, to accompany the product.

4.4.4 Measurement Reproducibility

According to VIM—2.25, measurement reproducibility is “measurement precision
under reproducibility conditions of measurement.”

In the case of exports, measurement reproducibility will verify the variability of
measurements between places or countries. This variability must be within criteria
previously established in the contract.

4.5 Proposed Exercises

4.5.1 According to the pressure gauge shown in Fig. 4.13, answer:

(a) What is the division of the scale?
(b) Which reading resolution would you adopt?
(c) How would you write the result of reading the gauge?

4.5.2 According to the thermometer shown in Fig. 4.14, answer:

(a) What is the division of the scale?
(b) Which reading resolution would you adopt?
(c) How would you write the result of reading the thermometer?
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Fig. 4.13 Pressure gauge.
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Fig. 4.14 Thermometer.
(https://pixabay.com/
photos/celsius-degree-
equipment-industrial-1604
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4.5.3 What is the gauge’s range from (—1 to 10) bar?
4.5.4 What is reading resolution?

(a) Lower division of an instrument.

(b) Lower difference between indications of a dial device that can be significantly
perceived.

(c) Greater difference between indications of a dial device that can be signifi-
cantly perceived.

(d) Lower difference between indications of a display device that cannot be
significantly perceived.

4.5.5 What is repeatability?

(a) Aptitude of a measurement instrument to provide very close indications in
repeated applications of the same measure under different conditions.

(b) Aptitude of a measuring instrument to provide very close indications in
repeated applications of the same measuring under the same measurement
conditions.

(c) Aptitude of a measuring instrument to provide very dispersed indications in
repeated applications of the same measuring under the same measurement
conditions.

(d) Aptitude of a measuring instrument to provide very close uncertainties in
repeated applications of the same measure under different measurement
conditions.

4.5.6 A pressure gauge, with measurement interval (0.0 to 200.0) bar, has the
following characteristics:

¢ Resolution: 0.4 bar.
e Maximum error: 0.8 bar.
* Hysteresis error: 1.2 bar.

(a) Determine, in relative terms, the maximum error and the hysteresis as a
function of the measurement range of the gauge.

(b) Determine, in relative terms, the maximum error and the hysteresis as a
function of the value indicated when the measured value is 65.0 bar.

4.5.7 A resistor was measured with a standard multimeter, and the value obtained
was (15.977 + 0.008) Q. This resistor was used to calibrate another multimeter,
and the following indications (Table 4.10) were obtained (all in Q).

Determine:

(a) The value of the mean of the indications.
(b) The bias of the instrument.
(¢) The measurement error.
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4.5.8 In the calibration of a mercury glass liquid thermometer, we found for the
standard value (Vr) 20.0 °C, and for the thermometer, the values 20.0 °C, 21.0 °C,
20.0 °C, 21.0 °C.

Determine:

(a) The bias of the thermometer.
(b) The measuring error of the thermometer.

4.5.9 A pressure gauge with a bias of 1 psi (psi is an English pressure unit and means
pounds per square inch. 1 psi = 689,476 kPa) made a pressure measurement,
finding 45 psi. What is your pressure value corrected?

4.5.10 Figure 4.15 represents five shots fired by a shooter. Which of the alternatives
best qualifies this shooter?

(a) Low accuracy and low precision.

(b) Low accuracy and high precision.
(c) High accuracy and low precision.
(d) High accuracy and high precision.

4.5.11 Figure 4.16 represents three arrows thrown by one person. Which of the
alternatives best qualifies this person?

(a) Low accuracy and low precision.

(b) Low accuracy and high precision.
(c) High accuracy and low precision.
(d) High accuracy and high precision.

4.5.12 Figure 4.17 represents three arrows thrown by one person. Which of the
alternatives best qualifies this person?

(a) Low accuracy and low precision.

(b) Low accuracy and high precision.
(c) High accuracy and low precision.
(d) High accuracy and high precision.

4.5.13 What is measurement error?

(a) Value of the indication of an instrument plus the reference value of the input
quantity.

(b) Reference value of the input quantity minus the value of the indication of an
instrument.

(c) Uncertainty of the indication of an instrument minus the reference value of
the input quantity.

(d) Indication value of an instrument minus the reference value of the input
quantity.
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Fig. 4.15 Shots at a target
(https://pixabay.com/
vectors/tiro-target-butt-shot-
gun-bullet-160574/)

Fig. 4.16 Arrows at a target
(https://pixabay.com/
photos/dart-sports-goal-
dart-board-arrow-3910686/)

4.5.14 Observe Fig. 4.18 of a thermometer and present the information requested for
both scales (°C—Ileft side and °F—right side).

(a) The scale division.
(b) The resolution.
(¢) Indication value.
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Fig. 4.17 Three arrows at a
target (https://pixabay.com/
photos/darts-goal-target-
direct-hit-arrow-2349468/)

4.5.15. Observe Fig. 4.19 of the instrument and present the information requested.

(a) The scale division.

(b) The resolution.

(c) The measurement range.

(d) Indication value when the red pointer is on number 5.
(e) The value of the maximum permissible error.

4.5.16 A standard resistor, whose value is (10,000 + 0.005) ©, was measured with
two multimeters under the same repeatability conditions. The results are shown in
Table 4.11.

(a) What is the most precise multimeter? Justify your answer.
(b) What is the most accurate multimeter? Justify your answer.

4.5.17 A digital scale with 0.001 g resolution was calibrated using a set standard
mass class E2. The result of calibration is in Table 4.12. Based on this informa-
tion, answer what is asked.

(a) At what point is the scale most accurate? Justify.

(b) At what point is the scale most inaccurate? Justify.

(c) When we measured three times the value of a mass M, in this scale, we find
the following: 5.003 g; 5.004 g; 5.005 g. Determine the corrected mean value
of mass M.
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Fig. 4.18 Thermometer
with °C and °F scales
(https://pixabay.com/
photos/thermometer-pay-
scale-fluid-level-1176354/)

Fig. 4.19 Analog voltmeter
(https://pixabay.com/
photos/instrument-voltage-
volt-meter-217276/)
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Tﬁ;ble 4.11 Multimeters Multimeter 1 (Q) 10.02 10.03 10.04
vajues Multimeter 2 () 10.02 10.04 10.06

Table 4.12 Scale calibration

Point Nominal value (g) Standard (g) Object (g) Bias (g)
1 1 1.000004 1.003 0.003
2 2 2.000007 2.004 0.004
3 5 5.000009 5.002 0.002
4 10 10.000005 9.999 —0.001
5 20 20.000017 20.000 0.000
6 50 50.000010 49.998 —0.002

4.5.18 Consider a calibration of the thermometer of Exercise 4.5.2. A standard
thermometer was used to calibrate at point 50 °C, whose certificate correction
to point 50 °C is —0.3 °C. Three measurements of the standard were made,
obtaining a mean of 50.2 °C and, for the thermometer, a mean of 50 °C. Based on
this information, determine:

(a) The standard temperature value at point 50 °C.
(b) The bias of the thermometer at point 50 °C.
(c) The correction to be applied to the thermometer at point 50 °C.



Chapter 5 )
Evaluation of Uncertainty in Direct S
Measurements

5.1 Concept of Measurement Uncertainty

Direct measurements are obtained by directly reading a measurement instrument that
measures the same quantity.

In a direct measurement, the result is obtained by comparing the value read by the
measuring instrument with the desired quantity. The measurement is done directly,
without the use of mathematical equations.

Examples of direct measurements:

* Temperature measurement with a glass liquid thermometer (Fig. 5.1);
* Length measurement with a metric tape;

* Mass measurement with a scale;

e Pressure measurement with a gauge;

» Measurement of a thickness gear with a Vernier caliper (Fig. 5.2).

A measurement’s result will always have a doubt associated with it, which we
consider measurement uncertainty. What is sought in a measurement with metro-
logical reliability is to estimate the measurement’s results and associated uncertainty
in the most reliable way possible.

Measurement uncertainty will always exist and never be eliminated since, as we
have previously presented, the true quantity value is also estimated.

It is possible, however, to define the limits within which the value of a measure-
ment with a certain associated probability is found.

The measurement uncertainty is defined by VIM—2.26 as:

* Non-negative parameter characterizing the dispersion of the quantity values
being attributed to a measurand, based on the information used.

* NOTE I Measurement uncertainty includes components arising from systematic
effects, such as components associated with corrections and the assigned quan-
tity values of measurement standards, as well as the definitional uncertainty.
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Fig. 5.1 Measurement with
thermometer. https://
pixabay.com/photos/
thermometer-temperature-
equipment-5947734/

Sometimes estimated systematic effects are not corrected for but, instead, asso-
ciated measurement uncertainty components are incorporated.

* NOTE 2 The parameter may be, for example, a standard deviation called
standard measurement uncertainty (or a specified multiple of it), or the half-
width of an interval, having a stated coverage probability.

* NOTE 3 Measurement uncertainty comprises, in general, many components.
Some of these may be evaluated by Type A evaluation of measurement uncertainty
from the statistical distribution of the quantity values from a series of measure-
ments and can be characterized by standard deviations. The other components,
which may be evaluated by Type B evaluation of measurement uncertainty, can
also be characterized by standard deviations, evaluated from probability density
functions based on experience or other information.

* NOTE 4 In general, for a given set of information, it is understood that the
measurement uncertainty is associated with a stated quantity value attributed to
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Fig. 5.2 Measurement with
Vemier caliper. https:/
pixabay.com/illustrations/
caliper-gear-measurement-
1121746/

the measurand. A modification of this value results in a modification of the
associated uncertainty.

The result of a measurement is an estimate of the measurement value, and thus,
the presentation of the result is only complete when accompanied by an amount
declaring its uncertainty.

As an example, we have read the room temperature in a laboratory. Suppose the
value iS Tiaporatory = 21.0 °C. The thermometer that made this measurement had a
measurement uncertainty of 0.5 °C. Therefore, the result of the measurement will be:

Tlaboratory = (21 O+ 05) °C.

We note that the ambient temperature in the laboratory ranges between 20.5 °C
and 21.5 °C. This means that the true value of room temperature in the laboratory is
understood within this measurement interval with a given probability; that is, there is
a probability of performing a new measurement of this temperature and finding the
value understood in this measurement interval.

Important
Since measurement uncertainty is a probabilistic value and thus estimated, we
can never be certain of a measurement’s result.


https://pixabay.com/illustrations/caliper-gear-measurement-1121746/
https://pixabay.com/illustrations/caliper-gear-measurement-1121746/
https://pixabay.com/illustrations/caliper-gear-measurement-1121746/
https://pixabay.com/illustrations/caliper-gear-measurement-1121746/

144 5 Evaluation of Uncertainty in Direct Measurements

In metrology, we usually adopt a confidence level of 95.45 % probability
(remember that, in a normal distribution, 95.45 % probability represents two stan-
dard deviations). Therefore, when we say that the laboratory temperature is
(21.0 £ 0.5) °C, we are saying that the true value of ambient temperature in the
laboratory has a 95.45 % probability of being understood in this interval.

The uncertainty of a measurement’s result is usually influenced by various
components, which can be grouped into two categories according to the method
characteristics used to estimate their numerical values: (1) uncertainties Type A and
(2) uncertainties Type B, which will be detailed below.

5.2 Types of Measurement Uncertainties

Various sources of uncertainty exist in a measurement. Therefore, we should
estimate these uncertainties and minimize their influences so that the measurement
outcome is known in a smaller interval.

5.2.1 Type A Evaluation of Measurement Uncertainty

According to VIM—2.28, it consists of evaluating “a component of measurement
uncertainty by a statistical analysis of measured quantity values obtained under
defined measurement conditions.”

Type A uncertainties can, therefore, be characterized by experimental standard
deviations. In metrology, the best estimate of a quantity that varies randomly is the
arithmetic mean x of n measurements made. The estimated variance (sz) or the
estimated standard deviation (s) characterizes the variability of the measured values,
that is, the dispersal around the mean value.

The best estimate of the variance of the mean is the experimental mean-variance
5?(X), whose expression is:

S2
n

S2(F) = (5.1)

The experimental standard deviation of the medium X serves to qualify how much
the mean value X represents the quantity to be measured. The better this estimate, the
greater the number of repetitions made in the measurement.

Important
The equation s(x) = Jiﬁ determines Type A uncertainty measurement or the

repeatability measurement uncertainty.
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For several reasons, especially economic ones, the number of repetitions of a
measurement is reduced, usually ranging from three to ten.

5.2.2 Type B Evaluation of Measurement Uncertainty

According to VIM—2.29:

Evaluation of a component of measurement uncertainty determined by means other
than a Type A evaluation of measurement uncertainty.
EXAMPLES Evaluation based on information

— associated with authoritative published quantity values,

— associated with the quantity value of a certified reference material,
— obtained from a calibration certificate,

— about drift,

— obtained from the accuracy class of a verified measuring instrument,
— obtained from limits deduced through personal experience.

Type B uncertainties can be characterized by standard deviations estimated by
distributions of probabilities assumed or based on experience or other observations.
Accessory and external information to the measurement process—obtained from
previous measurements of similar measurements, experience or knowledge of mea-
suring instrument behavior, manufacturer data, data provided by calibration certif-
icates, and instruction manual references—allows you to determine the uncertainties
of this type.

Examples of Type B uncertainty:

» Temperature gradient during measurement;

» Difference of ambient temperature concerning the stipulated reference
temperature;

* Indicator reading resolution;

+ Stability of the power supply;

» Parallax error;

* Uncertainty of the measurement standard;

* Drift from the standard;

* Geometric errors;

* Mechanical deformations;

» Hysteresis error.

In the evaluation of Type B uncertainty, it is necessary to consider and include,
when pertinent, at least those originating from the following sources:

(a) The uncertainty associated with the reference standard and any instability in its
value or indication (standard subject to instrumental drift or temporal instability).
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(b) The instability associated with measurement equipment or calibration, for exam-
ple, aged connectors, and any instability in their value or indication (equipment
subject to instrumental drift).

(c) The uncertainty associated with the equipment (measurand) to be measured or
calibrated, such as the value of its resolution or any instability during calibration.

(d) The uncertainty associated with the calibration (or measurement) procedure.

(e) The uncertainty associated with the effect of environmental conditions on one or
more of the previous items.

Comments:

1. Whenever possible, measuring errors or instrumental bias should be corrected.

2. A careful analysis should always be done when adding Type B uncertainties, so
that there is no repetition and a given source of uncertainty is not considered more
than once.

The document Guide to the expression of uncertainty in measurement (GUM)
regarding Type B uncertainties states that:

The proper use of the pool of available information for a Type B evaluation of standard
uncertainty calls for insight based on experience and general knowledge and is a skill that
can be learned with practice. It should be recognized that a Type B evaluation of standard
uncertainty can be as reliable as a Type A evaluation, especially in a measurement situation
where a Type A evaluation is based on a comparatively small number of statistically
independent observations.

Knowing a Little More...
JCGM 100:2008 GUM 1995 with minor corrections

Evaluation of measurement data—Guide to the expression of uncer-
tainty in measurement

The following text reproduces part of the original document’s Preliminary
and Scope.

“This Guide establishes general rules for evaluating and expressing uncer-
tainty in measurement that are intended to be applicable to a broad spectrum
of measurements. The basis of the Guide is Recommendation 1 (CI-1981) of
the Comité International des Poids et Mesures (CIPM) and Recommendation
INC-1 (1980) of the Working Group on the Statement of Uncertainties. The
Working Group was convened by the Bureau International des Poids et
Mesures (BIPM) in response to a request of the CIPM. The CIPM Recommen-
dation is the only recommendation concerning the expression of uncertainty in
measurement adopted by an intergovernmental organization.

This Guide was prepared by a joint working group consisting of experts
nominated by the BIPM, the International Electrotechnical Commission
(IEC), the International Organization for Standardization (ISO), and the
International Organization of Legal Metrology (OIML).

(continued)
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1 Scope

1.1 This Guide establishes general rules for evaluating and expressing
uncertainty in measurement that can be followed at various levels of accuracy
and in many fields — from the shop floor to fundamental research. Therefore,
the principles of this Guide are intended to apply to a broad spectrum of
measurements, including those required for:

— maintaining quality control and quality assurance in production;

— complying with and enforcing laws and regulations;

— conducting basic research and applied research and development in sci-
ence and engineering;

— calibrating standards and instruments and performing tests throughout a
national measurement system in order to achieve traceability to national
standards;

— developing, maintaining, and comparing international and national phys-
ical reference standards, including reference materials.

1.2 This Guide is primarily concerned with the expression of uncertainty in
the measurement of a well-defined physical quantity — the measurand — that
can be characterized by an essentially unique value. If the phenomenon of
interest can be represented only as a distribution of values or is dependent on
one or more parameters, such as time, then the measurands required for its
description are the set of quantities describing that distribution or that
dependence.

1.3 This Guide is also applicable to evaluating and expressing the uncer-
tainty associated with the conceptual design and theoretical analysis of
experiments, methods of measurement, and complex components and systems.
Because a measurement result and its uncertainty may be conceptual and
based entirely on hypothetical data, the term “result of a measurement” as
used in this Guide should be interpreted in this broader context.

1.4 This Guide provides general rules for evaluating and expressing
uncertainty in measurement rather than detailed, technology-specific instruc-
tions. Further, it does not discuss how the uncertainty of a particular mea-
surement result, once evaluated, may be used for different purposes, for
example, to conclude the compatibility of that result with other similar results,
to establish tolerance limits in a manufacturing process, or to decide if a
certain course of action may be safely undertaken. It may therefore be
necessary to develop particular standards based on this Guide that deal
with the problems peculiar to specific fields of measurement or with the
various uses of quantitative expressions of uncertainty. These standards may
be simplified versions of this Guide but should include the detail that is
appropriate to the level of accuracy and complexity of the measurements
and uses addressed.”

You can get the full document on the BIPM website:

<https://www.bipm.org/en/committees/jc/jcgm/publications>.


https://www.bipm.org/en/committees/jc/jcgm/publications%3e
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5.3 Evaluations of More Frequent Type B Uncertainties

As we have seen, the estimate of Type A uncertainty is obtained by calculating the
standard deviation of the mean measurement. The estimate of Type B uncertainties
already has several origins. Next, we present the primary sources of Type B
uncertainty and how to calculate them.

5.3.1 Estimation of the Uncertainty of Reading Resolution

It is essential to evaluate the contribution of reading resolution in estimating mea-
surement uncertainty, as it is widespread to find a low dispersion of the values
obtained in a measurement process, which characterizes Type A uncertainty as being
“zero.” In this case, depending on the value of the resolution and the type of
probability distribution adopted, this uncertainty may be one of the largest or the
most significant contribution to final uncertainty.

In a measurement process, we can come across two situations.

Situation 1: Measurement where we ‘“seek’ the value of the desired quantity;
that is, we do not know a priori what the value is.

Example 5.1 Reading Obtained ON A Digital Scale

Suppose the value of the mass of an object is 25.9 g and that the digital scale used for
this measurement has a resolution of 0.1 g. This means that the lowest value read by
the scale is 0.1 g.

Considering the algorithm in the digital scale responsible for digitizing the values
indicated, the “true value” of the mass will be comprised between the interval [25.85
and 25.949 ...] g. Values such as 25.95 g or larger should be rounded by the
instrument to 26.0 g, just as values such as 25.84 g or smaller to 25.8 g.

Therefore, every time the scale indicates 25.9 g, we will doubt the “true value” of
the mass caused by its resolution limitation. Considering that the probability that the
“true value” is understood between [25.85 and 25.949 ...] g is the same within this
interval, it is reasonable to adopt a statistical distribution that reflects this behavior,
that is, rectangular or uniform distribution. Graph 5.1 shows:

Note that the uncertainty of reading resolution will be the standard deviation of
the rectangular distribution, that is:

R
lyes = —— 52
> (5.2)

Where R is the resolution adopted.
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Graph 5.1 Uncertainty of p(xi)
reading resolution (uniform
distribution) Ti W

0.05¢g 005g

1
0.1
|

o ! ’ ;
259¢ xi

0.05.
(259-"7)e (259+2) e

L _ 001
res — T —
V12

Example 5.2 Reading Obtained in a Bimetallic Thermometer
Figure 5.3 presents the dial of a bimetallic thermometer with a scale of 0 to 120 °C,
with a division of 2 °C. Observing the figure, we realize the possibility of dividing
the division in half “with the naked eye.” Thus, we will adopt a reading resolution
equal to %2 of the division of the bimetallic thermometer (1 °C). The value read will
then be 20 °C, which may be understood in the interval 19.5 to 20.5 °C with the same
probability (uniform distribution).
(https://pixabay.com/photos/celsius-degree-equipment-industrial-16047/)
The uncertainty of reading resolution will be the standard deviation of the
rectangular distribution with R =1 °C:

g=0.029 g

u,eS=L°C=O.29°C

V12

Situation 2: Measurement where we ““fix” the desired value.

When we set the desired value, we know a priori the most likely value of measuring,
so it makes sense to attribute a greater probability to this value. In this case, we can
consider that the triangular distribution best represents the probability distribution of
reading resolution.

Example 5.3 Pressure Gauge Calibration
Suppose we calibrated a pressure gauge (Fig. 5.4) with a measurement interval
0 to 40 bar and resolution of 1 bar when using a comparative pump and fixed the
calibration points on the object at 10 bar, 20 bar, 30 bar, 40 bar, and 50 bar.

These values were fixed primarily to present a greater probability of occurrence
than any other did.

For point 30 bar, for example, the “true value” of the pressure will be in the
interval [29.5 to 30.49 ...] bar. Values such as 30.6 bar or larger will be rounded to
31 bar, just as values such as 29.4 bar or smaller will be rounded to 29 bar.


https://pixabay.com/photos/celsius-degree-equipment-industrial-16047/
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Fig. 5.3 Bimetallic
thermometer

badotherm
holland

Fig. 5.4 Calibration of a
pressure gauge. (Photo by
the authors)
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Considering that the probability of “true value” is higher at point 30 bar than at
any other point, because we fix this value, it is reasonable to adopt a statistical
distribution that reflects this behavior, that is, the triangular distribution.

In Graph 5.2, we have:
The uncertainty of reading resolution will be the standard deviation of the
triangular distribution with R = 1 bar.

R 1
s = iz = zzbar=0.20 bar (53)

Given the limitations of the digitization algorithm, the digital instrument will
adopt a uniform probability in rounding readings regardless of whether or not we fix
the desired value.

For the analog instrument, the probability of the measurement may be triangular
or uniform, depending on whether or not we fix the reading value.

5.3.2 Reading Resolution Adopted by the Calibration
Laboratory

Let us look at the following situation: using a calibrated instrument to perform a
measurement.

Some questions

1. Given that the laboratory that calibrated our instrument has incorporated the
uncertainty of reading resolution in the estimate of final uncertainty, we must,
in our measurements, consider the reading resolution of this calibrated standard as



152 5 Evaluation of Uncertainty in Direct Measurements

one of the components, as “it is considered” in the uncertainty declared on the
certificate?

2. When considering the resolution, are we not repeating the same source of
uncertainty twice?

3. In the case of a digital standard, the value of the resolution adopted by the
calibration laboratory is known as it will be equal to the digital increase.

4. In the case of an analog standard, a question arises: Was the value of reading
resolution adopted by the laboratory the same as what we will adopt?

5. Is it possible to place a magnifying glass on the analog instrument reading scale,
thus reducing its measurement uncertainty, since we are reducing its reading
resolution as long as it does not make it lower than the instrument sensitivity?
This is a usual procedure in laboratories, but the end user of the instrument should
be informed.

Answering the questions.

If the user can repeat, in reading with the instrument that came from calibration, the
resolution adopted by the laboratory during calibration, the contribution of the
standard resolution should not be considered in the final uncertainty of the measure-
ment. Otherwise, this portion should be considered in the final estimate.

For this reason, the calibration laboratories must provide the instrument’s cali-
bration certificate with the resolution adopted in calibration. Thus, we will know the
value of the resolution adopted and can repeat it at the time of measurement with this
instrument.

Using a magnifying glass to read analog instruments is allowed and healthy.
However, we should not determine the resolution of a measuring instrument with a
magnifying glass. It will lower the resolution than what can be discerned with the
“naked eye,” and the user usually reads with the “naked eye.”

5.3.3 Hysteresis Uncertainty Estimate

In Chap. 4, we saw that hysteresis is the biggest difference between a measurement
instrument’s charge and discharge values. Scales, comparator clocks, gauges, among
others, most commonly present hysteresis errors.

To estimate the uncertainty of hysteresis, we calculate the instrument’s hysteresis
(H) at the point and adopt a uniform or rectangular probability distribution.

H

u s = —F—= 54
hysteresis \/Tj ( )

Solved Exercise 5.1.
A Bourdon-type gauge, whose measurement range is 0 to 20 kgf/cm?, was calibrated
by comparison with a standard gauge. The values found are in Table 5.1.
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Table 5.1 Bourdon gauge calibration

153

Object Standard (kgf/cm?)
(kgffcm?) Charge 1 Discharge 1 Charge 2 Discharge 2
5 5.0 52 5.0 52
12 12.2 11.9 11.6 11.8
20 20.1 20.2 20.4 20.0
Table 5.2 Hysteresis
Object (kgf/cm?) Standard (kgf/cm?)
H, H, H
5 15.0-521=02 15.0-5.21 = 0.2 0.2
12 112.2-11.91 = 0.3 111.6-11.81 = 0.2 0.3
20 [20.1-20.21 = 0.1 120.4-20.01 = 0.4 0.4
Table 5.3 Hysteresis Object Standard (kgf/cm?)
uncertainty (kgf/cm?) H Hysteresis uncertainty
02 _
5 0.2 VE= 0.058
03 _
12 0.3 Vi = 0.087
04 _
20 0.4 Vi = 0.12
Calculate:

(a) Hysteresis at each point.
(b) The uncertainty of hysteresis at each point.
(c) Hysteresis and uncertainty of gauge hysteresis.

Solution:

(a) Knowing that hysteresis is the most significant difference between charge and
discharge, we can determine hysteresis at each point as follows (Table 5.2):

(b) Adopting a uniform distribution for hysteresis uncertainty, we have (Table 5.3):

(c) The gauge hysteresis will be the highest value:

H=0.4 kef/cm?

Unysteresis — 0.12 kgf/cm2
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Knowing a Little More...

In calibrating the gauge, we fix the object’s pointer directly to the desired
pressure and verify the variation of its pressure using the standard pressure
gauge. Thus, when we fix the pressure at 5 kgf/cm?, for example, we realize
the variation of the object gauge in the standard. This is why, at point 5 kgf/
cmz, we have the standard marking (5.0, 5.2, 5.0, and 5.2) kgf/cmz. This
variation is not caused by the standard but by the calibration object gauge.

5.3.4 Evaluation of the Uncertainty of the Standard
Instrument

A source of Type B uncertainty always exists in the calibration of measurement
instruments: the uncertainty from the standard instrument. In Chap. 2, when we
define calibration, we highlight that calibrating confronts the values measured by the
standard instrument with the calibration instrument (object). Therefore, the object
instrument’s uncertainty inherits the standard instrument’s uncertainty.

To determine the uncertainty of the standard instrument, check this value in the
standard instrument calibration certificate.

5.4 Standard Measurement Uncertainty

According to VIM—2.30, we have: “measurement uncertainty expressed as a
standard deviation.”

We must express all components of uncertainty (#;) of Types A and B
corresponding to a standard deviation. For this, we need to evaluate the probability
distribution applied to the uncertainty: normal distribution, rectangular or uniform
distribution, triangular distribution, etc.

5.5 Combined Standard Measurement Uncertainty

According to VIM—2.31, we have: “standard measurement uncertainty that is
obtained using the individual standard measurement uncertainties associated with
the input quantities in a measurement model.”

The equation can briefly determine combined standard uncertainty (u):
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u.=/uk +u (5.5)

Where u, are all Type A uncertainties, and up are all Type B uncertainties.

5.6 Effective Degrees of Freedom

The definition of ISO GUM says the following for the degree of freedom: “In
general, the number of terms in a sum minus the number of constraints on the
terms of the sum.”

When more than 30 measurements of the same measurement are performed, we
know, through statistics, that these results are very close to a normal distribution; if a
smaller number of measurements is used, we must bring this distribution closer to a
normal distribution by applying the t-distribution correction factor. However, to
establish this correction factor, it is necessary to determine the number of effective
degrees of freedom of the distribution.

When various sources of uncertainty are considered to estimate combined stan-
dard uncertainty (u¢), the number of effective degrees of freedom resulting from
combined uncertainty has to be calculated from information from each source of
uncertainty. Therefore, it is recommended to use the Welch-Satterthwaite equation
to estimate the number of effective degrees of freedom:

4 4 4 4

u u; u u;
—< =424 4L (5.6)

Vg U1 V2 i
Where uc is the combined standard measurement uncertainty; u, u,, ..., u; are the
standard measurement uncertainties of each source of uncertainty (Type A and Type
B uncertainty); vy, v,, v3 ..., v; are the degrees of freedom of each i source of

uncertainty, and v is the number of effective degrees of freedom associated with
combined standard uncertainty.
Eq. (5.6) can be reordered and presented by:

Ooff = i (5.7)

Important
The degree of freedom associated with the uncertainty of repeatability (Type
A) equals n — 1, where 7 is the number of measurements.

(continued)
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In evaluating the degree of freedom of Type B standard uncertainty from a
probability distribution a priori, for example, a uniform or triangular distribu-
tion, it is implicitly supposed that the value of uncertainty resulting from such
evaluation is known precisely. This implies that the degree of freedom asso-
ciated with this uncertainty will be infinite.

5.7 Coverage Factor

VIM—2.38 defines it as the “number larger than one by which a combined standard
measurement uncertainty is multiplied to obtain an expanded measurement
uncertainty. NOTE: A coverage factor is usually symbolized k.

The coverage factor k should always be declared so that the standard uncertainty
of quantity measurement can be recovered to calculate the combined standard
uncertainty of other measurement results that eventually depend on this quantity.

This factor k will be obtained from the determination of the number of effective
degrees of freedom (V) and using the t-distribution, in which the value of ¢ will be
the coverage factor k.

The value of vg obtained by Eqgs. (5.6) or (5.7) is usually not an integer. From the
effective degree of freedom, the coverage factor k can be obtained from Excel, using
the INV.T.BC function, or in the Student’s t-table.

When we use the calculated value of the v in the t-table, we should always
approach it to the immediately lower integer. For example, if the computed value is
Ve = 10.46, we must enter the table with veg = 10 and obtain k = 2.28. This will be
the value used for the coverage factor k.

Important
By using the calculated value of the effective degree of freedom (Vegr) in the
Student’s t-table, approach it to the immediately lower integer. This will
ensure a more prominent coverage factor and, thus, more significant expanded
uncertainty.

5.8 Expanded Measurement Uncertainty

According to VIM—2.35, expanded measurement uncertainty is defined as:

Product of a combined standard measurement uncertainty and a factor larger than
the number one.

NOTE 1 The factor depends upon the type of probability distribution of the output
quantity in a measurement model and on the selected coverage probability.

NOTE 2 The term “factor” in this definition refers to a coverage factor.
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NOTE 3 Expanded measurement uncertainty is termed “overall uncertainty” in
paragraph 5 of Recommendation INC-1 (1980) (see the GUM) and simply
“uncertainty” in IEC documents.

The expanded uncertainty U is the product of the combined standard uncertainty
uc and the coverage factor k:

U=k.u, (5.8)

Multiplication of combined standard uncertainty by a constant does not provide
additional information. It is just a way of representing the final uncertainty associ-
ated with a coverage probability. In calibration and industrial measurements, it is
expected to adopt the probability of 95.45 %, which would correspond, in a normal
distribution, to a coverage factor equal to two.

Important

We must always combine standard uncertainties with one standard deviation.
Therefore, when we use the uncertainty of measuring from a calibration
certificate, we must divide it by the scope factor k since the uncertainties
declared in a calibration certificate are expanded to 95.45 %.

5.9 Presentation of the Measurement Result

According to the document ILAC-P14:09/2020—ILAC Policy for Measurement
Uncertainty in Calibration, section 5.3: “The numerical value of the expanded
uncertainty shall be given to, at most, two significant digits. Where the measurement
result has been rounded, that rounding shall be applied when all calculations have
been completed; resultant values may then be rounded for presentation. For the
process of rounding, the usual rules for rounding of numbers shall be used, subject
to the guidance on rounding provided, i.e., in Sect. 7 of the GUM.”

5.10 Sources of Measurement Uncertainty

Next, we will present some sources of frequent measurement uncertainties in various
areas of metrology.
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5.10.1 Dimensional Metrology

Measurement uncertainty of the standard: this information is in the standard
calibration certificate.

Temperature effect: the temperature difference between measuring, the standard,
and the temperature of the calibration laboratory should be considered. As a rule,
the ambient temperature of the calibration laboratory should be 20.0 °C. This
effect is more significant for considerable lengths and in cases where the
measurand is of a material different from the standard. Although it is possible
to correct these errors, residual uncertainties of the uncertainty of the coefficients
of dilation and uncertainty in the calibration of the thermometer will always
remain.

Elastic deformation at the point of contact: is critical in the most exact measure-
ments and in the cases involving different materials. Its magnitude is a function of
the measurement force and the nature of the contact between driving and
measurand. Although it is possible to correct the results of these errors, the
uncertainty of this correction should be considered due to the uncertainty of the
applied force and the physical properties of the components in contact.

Cosine error: misalignment between the measurand or standard and the measure-
ment axis. Residual errors will often persist by the assumption that reference
surfaces are exempt from geometric errors.

Geometric error: planning or spherical errors, parallelism or perpendicularity of
the support surface, measurand, or standard cylindrical error.

Doubt in reading: uncertainty in the resolution of the instrument.

Stability of the standard, or measurand, as a function of time.

In this area, in general, the following instrument calibration intervals are used
(Table 5.4):

5.10.2 Thermal Metrology

Table 5.4 Calibration
interval

Measurement uncertainty of the standard: this information is in the standard
calibration certificate.

Electrical equipment/instruments used as support: standard resistors uncertainty,
multimeters, power supplies, thermal baths, etc.

Instrument Calibration interval—months
Measuring tape 6

Vernier caliper 12

Micrometer 12

Planger dial gauge 12

Slip gauges (standard block) 12
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Table 5.5 Calibration interval

Instrument Calibration intervals—months
Glass thermometer 6al2

Resistance thermometer (Pt-100) 12

Thermocouple 12

Bimetallic thermometer 12

Doubt in reading: uncertainty in the resolution of the instrument.

Partial immersion in glass thermometers: the part of the column of the immersion
thermometer outside the medium provides a difference in the temperature
indication.

Effect of resistance thermometers self-heating: the sensor is heated by the current
circulating.

Parasitic electrical uncertainties: uncertainties of electrical origin resulting from

static electricity at contact terminals. We can estimate this 2”7;/ value primarily

when we calibrate thermocouples.
Drifts of standards and electrical instruments.

In this area, in general, the following instrument calibration intervals are used
(Table 5.5):

5.10.3 Mass Metrology

Measurement uncertainty of the mass standard: this information is in the standard
calibration certificate.

Drift of the masses as a function of time: change of standard mass measurement
error as a function of time, depending on the surface finish and the quality of
manufacture, material type, handling, atmospheric corrosion, etc. Without this
information, we replace it with the maximum permissible error.

Environmental conditions: temperature gradients, humidity, static electricity.
Doubt in reading: uncertainty in the resolution of the instrument.

Air buoyancy: the density of the air can be determined from the measurement of
atmospheric pressure, temperature, and relative humidity. Even when the density
is corrected, uncertainties of pressure, temperature, and humidity measurements
will be present.

Measurement process: the quality of the scale influences the result of the mea-
surement and, therefore, we must know its characteristics:

» Repeatability of measurements;

* Linearity;

* Eccentricity of the load, especially when more than one mass is placed on the
plate;

* Influence of magnetic fields;
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Table 5.6 Calibration

. Instrument Calibration interval—months
interval Standard mass 24 to 48

Precision scales 12 to 36

Analytical scales 12
Table 5.7 Calibration Instrument Calibration interval—months
interval Digital multimeter 12

Oscilloscope 12 to 36

Resistive decade 24 to 48

» Effects of temperature;
e Lever arm’s length.

In this area, in general, a calibration interval of the instruments is used as follows
(Table 5.6):

5.10.4 Electric Metrology

Uncertainty of electrical reference standards: this information is in the standard
calibration certificate.

Different environmental conditions from the recommended.

Measurement system stability: as a function of time and conditions of use.
Doubt in reading: uncertainty in the resolution of the instrument.

Impedance of cables, terminals, and instruments: parasitic electrical uncertainties

resulting from static electricity at contact terminals. Its value is estimated in 2”7;/
Layout of instruments and standards during calibration: current leaks, electro-
magnetic fields, grounding.

In this area, in general, a calibration interval of the instruments is used as follows
(Table 5.7):

5.10.5 Pressure Metrology

Measurement uncertainty of the standard: This information is in the standard
calibration certificate.

Drift of the masses as a function of time: change of standard mass measurement
error as a function of time, depending on the surface finish and the quality of
manufacture, material type, handling, atmospheric corrosion, etc. Without this
information, we replace it with the maximum permissible error.

Doubt in reading: uncertainty in the resolution of the instrument.
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» Hysteresis.

» Different environmental conditions from the recommended.

 Dirifts of standards and electrical instruments.

» Impedance of cables, terminals, and instruments: parasitic electrical uncertainties

resulting from static electricity at contact terminals. Its value is estimated in Z"T;/

5.10.6 Analytical Metrology

* Sampling: where in-house or field sampling forms part of the specified proce-
dure, and effects such as random variations between different samples and any
potential for bias in the sampling procedure form components of uncertainty
affecting the final result.

» Storage Conditions: where test items are stored for any period prior to analysis,
the storage conditions may affect the results. The duration of storage, as well as
conditions during storage, should, therefore, be considered uncertainty sources.

» Instrument effects: may include, for example, the limits of accuracy on the
calibration of an analytical balance; a temperature controller that may maintain
a mean temperature that differs (within specification) from its indicated set point;
an auto-analyzer that could be subject to carryover effects.

* Reagent purity: the concentration of a volumetric solution will not be known
precisely even if the parent material has been assayed, since some uncertainty
related to the assaying procedure remains. Many organic dyestuffs, for instance,
are not 100 % pure and can contain isomers and inorganic salts. The purity of
such substances is usually stated by manufacturers as being not less than a
specified level. Any assumptions about the degree of purity will introduce an
element of uncertainty.

* Assumed stoichiometry: where an analytical process is assumed to follow a
particular reaction stoichiometry, it may be necessary to allow for departures
from the expected stoichiometry, or incomplete reaction or side reactions.

*  Measurement conditions: for example, volumetric glassware may be used at an
ambient temperature different from that at which it was calibrated. Gross
temperature effects should be corrected, but any uncertainty in the temperature
of liquid and glass should be considered. Similarly, humidity may be important
where materials are sensitive to possible changes in humidity.

o Sample effects: the recovery of an analyte from a complex matrix, or an instru-
ment response, may be affected by composition of the matrix. Analyte speciation
may further compound this effect. The stability of a sample/analyte may change
during analysis because of a changing thermal regime or photolytic effect. When
a ‘spike’ is used to estimate recovery, the recovery of the analyte from the sample
may differ from the recovery of the spike, introducing an uncertainty that needs to
be evaluated.
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Table 5.8 Voltage Measurements Results (V)
measurements

1 1.22

2 1.22

3 1.24

4 1.22

5 1.20

» Computational effects: selection of the calibration model, e.g. using a straight
line calibration on a curved response, leads to poorer fit and higher uncertainty.
Truncation and round-off can lead to inaccuracies in the final result. Since these
are rarely predictable, an uncertainty allowance may be necessary.

* Blank Correction: there will be an uncertainty on both the value and the
appropriateness of the blank correction. This is particularly important in trace
analysis.

* Operator effects: possibility of reading a meter or scale consistently high or low.
Possibility of making a slightly different interpretation of the method.

Source: EURACHEM/CITAC Guide CG 4—Quantifying Uncertainty in Analytical
Measurement.

Solved Exercise 5.2: Three or more measurements with a calibrated
instrument.

With a digital multimeter, we performed five voltage measurements in a circuit.
The results were (Table 5.8):

Consider the uncertainty of the multimeter obtained in the calibration certificate is
0.02 V, for a probability of 95.45 % and k = 2.23, with the instrumental bias of
+0.02 V.

Determine:

(a) The Type A measurement uncertainty.
Type A uncertainty is calculated by standard deviation from the mean of five

measurements.

5= 0.01412 Vo sy = 5o = Q01412 V) 6063245 v

@ V5
Note: As the result of uncertainty is partial, it is not to round it up. We will leave
to make the rounding when declaring expanded uncertainty.
(b) The Type B multimeter uncertainty.

We must divide the declared uncertainty in its Calibration Certificate by the
coverage factor k. Thus, its measurement uncertainty after division will be standard-
ized uncertainty with a standard deviation.
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Uy 002V
Up=—" =553 =0.008969 V

(c) Combined uncertainty of measurement

ue = /1% + u} = /0.0063245> + 0.008969> = 0.010975 V

(d) Expanded uncertainty for a probability of 95.45 %.

Expanded uncertainty is determined by multiplying the combined uncertainty by
the factor k. To determine k, it is necessary to calculate the effective degree of
freedom of the combination of these uncertainties (Type A and Type B) and then
consult the t-table.

The degree of freedom of Type A uncertainty is: vo =n—1=5—1=4.

The degree of freedom to the Type B multimeter equals 12 (from the t-table for
k =2.23).

Ul 0.010975*
ut T 0.0063245% + 0.008969*
o 4 12

Then vy = =1544—-k=2.18

U=k.u,=2.18x0.010975 V=0.02393 V

(e) The metrological correct result of the expanded uncertainty.

In addition to being unable to declare uncertainty with more than two significant
digits, in this particular case, the multimeter measurement uncertainty cannot go
beyond the second decimal digit (one significant digit) since the multimeter can only
read to the second decimal digit.

Unue=0.02 V. k=2.18, with a probability of 95.45 %.

(f) The corrected voltage value.

Mean = 1.22 V.
Instrumental bias + 0.02 V.
Corrected value = (1.22-0.02) V =1.20 V.

(g) Measurement result (MR)

MR = (1.20+0.02) V

Solved Exercise 5.3: Only one measurement with a calibrated instrument.

Whenever possible, we must perform at least three measurements. This allows us
to evaluate Type A uncertainty, that is, the repeatability of the measuring. If the
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measurement is stable with very low or no variation in instrument resolution, we can
proceed according to the following exercise.

Exercise: A glass liquid thermometer measures fuel oil temperature with a measure-
ment uncertainty of 0.1 °C (for k = 2 and 95.45 %) and instrumental bias of —
0.2 °C. The value found was 28.4 °C. Determine the measurement result.

Solution: Corrected measurement = (28.4 + 0.2) °C = 28.6 °C

MR = (28.6+0.1) °C

Note that it was impossible to calculate the uncertainty of the repeatability of the
measurement. Thus, the declared measurement instrument in its calibration certifi-
cate only inherited the final uncertainty.

5.11 Proposed Exercises

5.11.1 A car speedometer ranges from (0 to 200) km/h. The uncertainty at any point
is 2 km/h

(a) What is the uncertainty at 100 km/h?

(b) What is the percentage uncertainty compared to 100 km/h?
(c) What is the percentage uncertainty to 50 km/h?

(d) What is the percentage uncertainty compared to 5 km/h?
(e) At what point is the lowest percentage uncertainty?

5.11.2 Mike measures his brother’s height and finds 176.35 cm, with an uncertainty
of 0.21 cm.

(a) Round out and write the height of Mike’s brother with one significant digit
concerning his uncertainty.
(b) Give the same answer in meters.

5.11.3 Martha uses a timer to measure the period of a pendulum. The results are
(Table 5.9):

(a) What is the mean value of the period?
(b) What is the standard deviation of the mean?

Table 5.9 Period

Measurements Period (s)
measurements ] 0.63

2 0.64

3 0.65

4 0.63

5 0.65
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Table 5.10 Time

Measurements Fall time (s)
measurements 1 0.45

2 0.42

3 0.41

4 0.48

5 0.44
Table 5.11 Diameter Measurements Diameter (mm)
measurements 1 256.90

2 257.05

3 256.95

4 257.00

(c) What is the best estimate of measurement uncertainty?
(d) Express its result, considering only Type A uncertainty as the only source of
measurement uncertainty.

5.11.4 The results of five measures of the fall time of a body, performed by a digital
timer, were (Table 5.10)

Considering that the uncertainty of the timer is 0.02 s to k = 2 and 95.45 % of
probability, calculate:

(a) The number of observations #.

(b) The mean of observations.

(c) The standard deviation of the mean.

(d) The expanded uncertainty of body fall measurement.

(e) The expanded uncertainty despising the uncertainty of the timer.

5.11.5 To determine the diameter of an axis, a mechanic used a Vernier caliper with
an uncertainty of 0.05 mm (k = 2 and 95.45 %) and a resolution of 0.05 mm. Four
measurements were performed, and the values found for the diameter were
(Table 5.11)

What is the diameter value and its measurement uncertainty?

5.11.6 The length measurement of a piece with a “true value” of 10.1538 mm was
performed by a micrometer with a resolution of 0.001 mm and measurement
uncertainty equal to 0.002 mm, with k = 2.23 to 95.45 %. Determine

(a) The bias of the micrometer.

(b) The Type A uncertainty for the set of measurements.

(c) The combined uncertainty and its degree of freedom.

(d) The expanded uncertainty of measuring the length of the piece (Table 5.12).

5.11.7 Using a digital scale with a resolution equal to 0.1 g, the mass of metal was
measured four times, finding the following values (Table 5.13)
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Table 5.12 Length Measurements Length (mm)
measurements 1 10.158

2 10.157

3 10.159

4 10.155

35 10.153

6 10.156

7 10.154

8 10.156

9 10.155

10 10.157
Table 5.13 Mass Measurements Mass (g)
measurements 1 235

2 23.5

3 23.6

4 23.8
Table 5.14 Temperature Measurements Temperature (°C)
measurements

1 80.5

2 80.5

3 81.0

4 81.0

5 80.0

Considering that scale measurement uncertainty is double its resolution
(to k = 2.00 and 95.45 %):

(a) What is the Type A uncertainty of this measurement?
(b) What is the bias, knowing that the “true value” of the metal mass is 23.60 g?
(c) What is the expanded uncertainty of this measurement?

5.11.8 A metrology student declared the measuring uncertainty of the density as
follows

p=(1.003+0.0235) g/mL

What is the error in the statement of this measurement?

5.11.9 Consider a bimetallic thermometer with a resolution of 0.5 °C used to
measure the temperature of mineral oil contained in a tank. Five measurements
were made, obtaining the following values (Table 5.14)

Knowing that the bimetallic thermometer used in this control has an uncertainty
of 0.6 °C (k = 2.87; 95.45 %), calculate:



5.11 Proposed Exercises 167

Table 5.15 Mass Measurements Mass (g)
measurements 1 100.0034
2 100.0038
3 100.0032
Table 5.16 Mass Measurements Mass (g)
measurements 1 12.0004
2 12.0006
3 12.0006

(a) The mean of measurements.

(b) The repeatability uncertainty.

(c) The standardized uncertainty of the bimetallic thermometer.

(d) The combined uncertainty of this measurement.

(e) The effective degree of freedom of the measurement.

(f) The coverage factor is 95.45 %.

(g) The expanded uncertainty to 95.45 %.

(h) What source of uncertainty has the most significant influence on the process?

5.11.10 Consider measuring a mass, presented in Table 5.15, using an analytical
scale performed in a laboratory at the point for 100 g. The scale bias at point 100 g
is declared in the calibration certificate —0.0050 g. The uncertainty declared in
the calibration certificate is 0.0008 g (k = 2.00; 95.45 %).

Based on this information, determine:

(a) The mean of measurements.
(b) The repeatability uncertainty.
(c) The expanded uncertainty to 95.45 %.

5.11.11 Consider a mass measurement M on a scale. The scale measurement
correction at this point is —1.5 mg, with an uncertainty of 0.3 mg (k = 2.11;
95.45 %). Three mass measurements were made to obtain the values in
Table 5.16. Based on this information, determine:

(a) The mean of measurement.

(b) The repeatability uncertainty.

(c) The bias of the scale.

(d) The expanded uncertainty to 95.45 % with its respective factor k and the degrees
of freedom.

5.11.12 What is the false alternative regarding the measurement uncertainty?

(a) It is a non-negative parameter that characterizes the dispersion of the values
assigned to the measurement.
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(b) Combined standard uncertainty is obtained using uncertainties in the form of an
individual standard deviation associated with input quantities.

(c) Expanded measurement uncertainty is the sum of all Type A and Type B
uncertainty.

(d) The probability of coverage refers to the chance that a proper set of measurement
values is contained in a specified coverage interval.



Chapter 6 )
Evaluation of the Uncertainty in Indirect g
Measurements

6.1 Uncertainty Propagation Law

Consider a greatness W described by the function W =f(a, b, c ...), where q, b, c,
are statlstlcally independent’ variables. If the most likely values for these quantltles
are @, b, c, ..., the most likely value for W will be W =f (a b.,c, ) Expanding the
w function in the Taylor series, we will have:

W= W(a,b,c...) + aW( i—a)+aW(b —-b) + aW(c,-—E)-l—...
da ob Oc
10°W ,  10°W 10°wW ) (6.1)
+§aa2 (ai—a)" ++5 37 (b,—b) t55a2 (ci—2¢)" + ...

We will make an approximation disregarding the quadratic terms when

(ai—a), (bi—b), (c;—7)...areof the order of greatness of the standard deviation

Ga» Ops O, ... Then, 6, = (a; —a) and; aaavzv (a; — a) ~0.

This condition applies to all other variables.
Therefore, we have:

= ow ow ow
Wi—W (a.b,c...) =AW= Cat g O s

Ba O+ ... (6.2)

The term aw represents the partial derivative of W concerning the variable a,

a=a, calculated in which all other variables were kept constant.

" The variables are considered statistically independent when the variation of one does not influence
the variation of the other, that is, all behave in a detached manner. Statistically, these variables have
a correlation coefficient equal to zero.
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W variance can be obtained by:

N 2
21 2 oW oW OW _
sW_N_IiZ:lAWi _1 Z W Aa; i+ 5y Abi+t A+ | =
N 2 2
1 ow ow ow
2 _ —— —_— . — —_— .
=N ; (aa Aa,) + (ab Ab) + (ac Ac,>
N
ow ow ow ow
-Aa; -Ab; 2 =—-Ag;- —=—-Ac;
el gy 2 2 (G Gy ) 2 e )
ow ow
2 -Ab; —-Ac;
+ <ab 3c C) +o-

As variables a, b, ¢, ... are statistically independent, there is no correlation
between their deviations. Aa;, Ab;, Ac;... and, consequently, all types of greatness,
as

ow ow
—-Aa;- -Ab;
Oa b

has the same probability to be both positive and negative. Thus, for a large number
N of measures, the second term of the sum is nullified, resulting in:

We can rewrite it as:

oW\ ow\’ oW\’
Sﬁ:(%) 624‘ <E> O'i—F <W) 6?“—

Considering the uncertainties of variables a, b, ¢, ... as their standard deviations,
we can rewrite the previous equation:
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Fig. 6.1 Brook Taylor
(1685 — 1731, England)

ow\? ow\? ow\?
I,t%V: (W) ui + (E) 'MZ + <W) M%"‘ (63)

Equation (6.3) is the uncertainties propagation equation of any function W (a, b,
c,...), in which variables a, b, c ... are independent.

Knowing a Little More ... (Fig. 6.1)
https://images.fineartamerica.com/images-medium-large/1-brook-taylor-1
685-1731-granger.jpg

Brook Taylor (1685 — 1731, England) came from a relatively wealthy
family: his father, John Taylor, although disciplining, was interested in paint-
ing and music and taught his son. Thus, Brook was later able to apply his
mathematical knowledge in these two areas. Born in a family of possessions, it
was possible to have private teachers. Brook was educated at home (having
acquired a good base in classics and mathematics) before entering Cambridge
in 1703. There, Taylor improved his mathematical knowledge, graduating in
1709. However, a year earlier (1708), he had already written his first relevant
mathematics work, although his publication occurred only in 1714. In 1712,
Taylor was elected to the Royal Society and appointed to a commission
created to decide who the inventor of the calculation was: Newton or Leibniz.

Several personal tragedies marked his career, such as his marriage to
Brydges of Wallington in 1721, which suffered opposition from John Taylor
due to social class differences. Thus, the father-and-son relationship was
broken until 1723, when Brook’s wife died in childbirth along with their

(continued)
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Knowing a Little More ... (Fig. 6.1) (continued)

son. After this loss, Brook returned to live with his father. In 1725, he married
again, with his father’s approval. The chosen one was Sabetta Sawbridge of
Olantigh. In 1729, after his father’s death, Brook inherited the property.
However, personal tragedies continued to torment him when his second wife
died in childbirth. The child, named Elizabeth, managed to survive. Taylor
lived a few more years (died at age 46), but his mathematical deeds are
surprising and probably not deepened due to personal factors (disappoint-
ments, fragile health). It gave rise to a new branch in mathematics called
“Calculus of finite differences,” parts integration, and the series known as
Taylor’s expansion.

6.2 When Variables Are Statistically Dependent

Statistically, dependent variables behave in a linked manner; that is, the variation of
one influences the variation of another. These variables have a different correlation
coefficient from zero.

In the presence of statistically dependent variables, measurement uncertainty
should consider the correlation coefficient (r) between variables. The correlation
coefficient may vary between [—1, +1], being zero when the variables are indepen-
dent, and their expression is given by:

_ Sap
- (6.4)

>oi-1(ai—a)(bi —b)

\/Z (a; —a) \/Z b; fb

Where s, and s;, are the standard deviation of a and b variables, and s, is the
standard deviation of the correlation between the variables given by Eq. (6.5).
If the variables are dependent on each other, the uncertainty propagation equation

will be:
2 [OW ow ow ow
“W‘(aa>”+(ab> ”(ac) #o2(3)
ow oW\ [OW
<5b> r(a, b)uaub+2<aa><ac>r(a,c)uauc+... (6.6)

where r(a, b), r(a, c), r(b, c¢), ... are the correlation coefficients between the variables
(a, b, c...).

(6.5)
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Table 6.1 Relative uncer- Case 1 F—x

tainties of some functions R up=F- (%)2 + (“T))z

Case 2 F= );‘ N 2
ur=F[ ()" + (%)

Case 3 F=x" up:F(mL;—‘)

Case 4 F=x"+y1 ) N2
= Fy/(p2) + (¢%)

Case 5 F = logx up =0,43429. (u;)

Case 6 F=Inx up = (%)

Case 7 F=¢" up=F - u,

Case 8 F=10" up = F-(2.3026 - u,)

Note: ur is the combined uncertainty of the function F

6.3 Method of Relative Uncertainties>

If we do not want to calculate the partial derivative of a function or this knowledge
has not yet been addressed by the reader, follow, in Table 6.1, a propagation
relationship of uncertainty in which the relative uncertainties are used in some
mathematical functions.

The relationship between the measurement uncertainty of a variable x and the
value of this variable determines relative measurement uncertainty.

The variables must be statistically independent.

u
Urelative = ;x (67)

Solved Exercise 6.1
Deduces the formula of relative uncertainty to case 1: F = x - y.

Solution
* The partial derivative of function F concerning x: 5 =y.

» The partial derivative of function F' concerning y: 5 =X

oF\? OF\?
= (5) e (5)

up = ()i + (0%

>This method can be employed when derivation techniques are not known. It can be applied
to studies on the calculation of measurement uncertainties at the high school/technical level.
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u% _ y2u2x + x2u2y
» Raising to the square both members of the equation F = x - y
2 2 2 2.2
(F)"=(xy)" =F =x"y

« Dividing each member of the equation by F*> = x* - y*

up (P e ().
22 el 22 )t

« But: F* =x" - y%

2

o (e @ -( ()

Solved Exercise 6.2
Deduces the formula of relative uncertainty to case 2: F = f

Solution

» The partial derivative of function F concerning x: %—i = %

» The partial derivative of function F concerning y: %—5 = - y%

5

+ Dividing each member of the equation by F? = 3
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w2 1 fl
F_[»),2 ¥1.2
ol Bl Ll e L
» »? y?
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But: F2 =%

Solved Exercise 6.3

A circuit was assembled to determine the electrical resistance R, in which the value
of the electric current (i) that passes through the resistor and its voltage (V) were

measured. The variables V and i are statistically independent (different instruments
measured them).

The following values were found with k = 2 and 95.45%:
V=(15.0+0.1) V
i=(0.286+0.003) A
Determine:
(a) The value of the electrical resistance R, with the correct number of significant
digits.

(b) The uncertainty of electrical resistance by the derivative method.
(c) The uncertainty of electrical resistance by the relative uncertainties method.

Solution

(@) R=V/i=15.0/0.286 =52.44755Q — R =524 Q.
(b) In this situation, we can use Eq. (6.3):

OR 2+ oR 1\’
ov™ oi M

PN
Il

The standard uncertainty of V and i
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U 0.1
U, 0003

Then:

2
—15
—1/(0.05/0.286)% + [ —2.0.0015 ) =0.32593 Q
R \/( /0.286) +<O‘2862 >

Since the coverage factors of both voltage (V) and electric current (i) are equal to
two, we will have an infinite degree of freedom and, consequently, a coverage factor
for the electrical resistance (R) equal to two.” Thus, expanded uncertainty will be:

Ur=k . ug=2.00 x 0.32593=0.6519 Q

Since we cannot declare uncertainties with more than two significant digits, we
will have to round the result to one decimal digit, being compatible with the
measured electrical resistance value of 52.4 Q. The uncertainty of R will be:

Ur=0.7 Q

The result will be:

R=(524+07) Q

(c) Relative uncertainties method.

() = (%) + ()

2 2
ug \?_ (0.05)"  (0.0015)"
(m) —(15.0) + ( 0286) =0.00003862
ug = 52.4 /0.00003862 = 0.3256
k=2.00

*In the next section, we will study how to determine the coverage factor, when the components that
contribute to uncertainty have a different degree of freedom from infinity.
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Fig. 6.2 Measurement m

circuit \\/
(D

Ur=kup=2.00 x 0.3256=0.6513 Q
Up=0.7 Q

The result will be: R = (52.4 + 0.7) Q

6.4 Evaluation of the Effective Degree of Freedom
for Relative Uncertainties

In Chap. 5, we saw that we must use the Welch-Satterthwaite Eq. (5.6) or Eq. (5.7) to
determine the effective degree of freedom.

In the case of indirect measurements, we must apply the uncertainties relative to
Eq. (5.6), since the quantities involved have different units. In this way, the Welch-
Satterthwaite equation is like this:

Veff V] 02 V;

* ug.is the combined relative uncertainty of the quantity that we need to determine
the degree of freedom.

* Ugy, Uga, Ug3, ..., Ug; are the standard relative uncertainties of each i source (Type
A and B uncertainties).

* vy, Uy, U3, ; ... are the degrees of freedom of each i source of uncertainties;

* v is the effective degree of freedom associated with standard combined relative
uncertainty.

Solved Exercise 6.4

A cylindrical metal bar (Fig. 6.3) has a diameter d = (2.50 + 0.01) cm, k = 2.37, and
95.45%; length L = (3048 + 0.01) cm, & = 2.28, and 95.45%; mass
M = (1158.0 £ 0.1) g, k = 2.23, and 95.45%. Whereas the equation calculates the
volume of a cylinder:

Fig. 6.3 Cylindrical bar *

v
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_ ad’L

Vv T

Determine:

(a) The density of the metal bar.
(b) The expanded uncertainty of metal bar density to 95.45% metrological
reliability.

Solution
(a) The density:

_M
P=y
M
P 7z d*L

4

_4AM
P x d°L
4x1158

p =7.7397 - p="1.74 g/cm’

~ 31416 x 2.50%x30.38

(b) Considering the variables statistically independent, we can use Eq. (6.3):

o \? op\? op\?
(8 e () 0 ()

op 4

o _ —0. 4/cm’
oM~ adL 0.006684 /cm
ap —8M 4

= = = —6.19174

3d = i 9 g/cm
ap —4M 4
o _ - 02

oL~ 2L 0.25393 g/cm

2, = (;%)2 =0.002011

2 _ (001V? _
wi=(57) =0.0000178

. (001
uL_(z_zg) —0.00001924
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u,= \/0.0066842)60.00201 1+(—6.191 74)2x0.0000178 +(— 0.25393)2)60.00001924

u, =0.026151g/cm’

Note: We could also have calculated density uncertainty using the relative
uncertainties method.

4M 4 5
= =—-Md “L
P ad*L 7#

2 2 _ 2
U, =p \/(’;f‘;) + (=28 4+ (5/%) =0026151 g/en’

Degree of freedom, using Eq. (6.8), and the coverage factor:

4 4 4 4
Urc __ Upi +”R2+ _'_@
Vef 01 %) V;
4
Uy 4 4 4
L uy g uy
() @' @ @
Uef Um U4 uL

Student’s t-table
M: k=223 — oy=12
d: k=237 - v;=8
L:k=228 — v,=10
(0,026151>4 (0.1/2.23)4 (0.01/2.37)4 (0.0]/228)4
7,74 1158 2.50 30.48
= + +

Veff N 12 8 10

Vs = 128.4717
Using the Excel® function INV.T.BC (0.0455; 128.4717) — k = 2.02

U=k . u,=2.02x0.026151 =0.0528 g/cm3
U=0.05g/cm’

The result will be: p = (7.74 + 0.05) g/em’; k = 2.02 and 95.45 %.
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6.5 Sensitivity Coefficient

Considering a function W (a, b, c, ...), in which a, b, c, ... are its variables, as
described in Sect. 6.1, we have Eq. (6.3) below.

uw—(aa> u, + b u, + e u, + ...

This equation describes the propagation of uncertainties of a function W.
Partial derivatives (%—W) (%—W) (a—w) ... describe the variation of function
a b oc
W concerning each variable a, b, c, ...

Important
In metrology, these partial derivatives are called sensitivity coefficient (SC;)
and describe how each input a, b, c,... influences the output value W.

Experimentally, if all variables remain constant and only one, for example, the
variable a, changes, we can verify the variation of W. In Solved Exercise 6.4, we saw
that the partial derivative method allows us to determine the function’s sensitivity
coefficient concerning each variable.

The sensitivity coefficient

o _ 4
oM zd’L

indicates the variation of cylinder density as a function of the variation of its
mass (M).
The same happens with the expression

% _ —&M
od  zd’L

which indicates the change of cylinder density by variation of its diameter (d), and
the expression

Op _ —4M
OL  nd*l?

indicates the variation of cylinder density as a function of the variation of its length
(L).

Knowledge of the sensitivity coefficient is essential to know how much a variable
influences the result of an indirect measurement, minimizing its influence and, thus,
its measurement uncertainty.
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In Solved Exercise 6.4, we saw that the largest sensitivity coefficient (in absolute
value) of the three-cylinder variables in question—diameter (d), mass (M), and
length (L)—is the sensitivity coefficient of cylinder density concerning its diameter:

a[) 4 3

= = =0.006684

oM  zd’L /em
ap —8M 4
== = = —6.19174
0d  zd’L g/em
ap —4M 4
= = =-02
oL = 212 0.25393 g/cm

This fact indicates that we should be more concerned with diameter measurement
uncertainty (higher absolute value of SC;), if we want to minimize its influence on
the result of cylinder density.

6.5.1 Sensitivity Coefficient Transforming Uncertainties

The sensitivity coefficient is also applicable, when we want to transform a measure-
ment uncertainty that presents itself into a quantity to another quantity. This case is
widespread when we want to measure a quantity, and the instrument used provides a
sign in another quantity. We can cite sensors (thermoresistors and thermocouples)
and pressure and temperature transducers.

Take as an example the PT-100 platinum resistance thermometer (RTD), which is
widely used in industry and thermometry laboratories, because it has low uncertainty
and good accuracy. It measures temperature through the variation of its platinum
resistance, which, at zero °C, has a value close to 100 ohms.

The Callendar—Van Dusen equation describes the relationship between resistance
(R) and temperature (7)) of platinum resistance thermometers.

R(T)=Ry (1+AT +BT* — 100CT°* + CT*) (6.9)
where R(T) is the resistance value at the desired temperature 7, and Ry, is the value of

platinum resistance at 0 °C. A, B, and C are the RTD coefficients, with typical values
for an industrial platinum resistance thermometer such as:

A=3.9083x107%/°C; B= —5.775x10""/°C%
C=0 (T<650°C); C= —4.183x10""2/°C* (T >650 C)
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Table 6.2 PT-100 sensitivity Temperature (°C) SCy (Q/°C) Uncertainty (°C)

f:;;iizﬁtr;s a function of its 0 0.390830 38 x lo,z
10 0.389675 3.8 %107
20 0.388520 3.9%x 1073
30 0.387365 39x107°
40 0.386210 39x107°
50 0.385055 3.9%x1073
60 0.383900 3.9%x 1073
70 0.382745 3.9%x 1073
80 0.381590 39x107°
90 0.380435 39x107°
100 0.379280 40x1073

Solved Exercise 6.5

Let us consider that we will use a multimeter with a measuring uncertainty of
0.003 Q to read the resistance R(T). How will we transform this measurement
uncertainty and the quantity of electrical resistance for the temperature quantity, °
C unit?

Solution
To solve this problem, we will determine the PT-100 sensitivity coefficient (SCr) to
obtain the relationship between the electrical resistance and the temperature
quantities.

The PT-100 sensitivity coefficient is provided by deriving Eq. (6.9) in the
function of 7. Then:

SCr= % =Ro(A + 2BT — 300CT* + 4CT")

For each temperature value, we will use an SCy value. Table 6.2 presents
temperature and uncertainty values up to 100 °C considering:

Ry=100 Q; A=3.9083x1073/°C; B= —5.775x10"7/°C% C=0

_ Umult @
Umultec = SCT

Knowing a Little More ...
Platinum resistance thermometer

This thermometer works based on ohmic resistance variation as a function
of temperature. The sensor element is commonly made of platinum with a high

(continued)
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platinum wires
(PT-100 4 wires)

Fig. 6.4 Four-wire platinum resistance thermometer. (Photo by the authors)

degree of purity and encapsulated in ceramic or glass bulbs (Fig. 6.4). Several
types of resistance thermometers, from the standard thermometer to the more
robust industrial thermometer, may have uncertainties in the tenth of the
degree. The most common platinum types are those with a resistance of
25 ohms, 100 ohms, 500 ohms, or 1000 ohms at the ice point (0 °C) (Fig. 6.4).

A two-, three-, or four-wire resistance bulb connection is used according to
the type of instrument and the desired accuracy in the measurement. The four-
wire thermometers are the most exact and are called half standard. The PT-25
is considered standard, being the most accurate and uncertain of 0.001 Q. Its
main constructive characteristics are:

(1) The sensor element is made of platinum with a purity better than
99.999 %;

(i1) Great thermometer stability and measurement accuracy, with uncertainty
values of (0.0006 to 0.01) °C.

6.6 Proposed Exercises

6.6.1 The expression gives the density of a sphere:

M 6M

vV aD?

Consider M = (1000 + 1) g, D = (8.000 + 0.002) cm, and k£ = 2.00 and 95.45 %.
Determine the density and the measure uncertainty using:
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(a) The partial derivatives.
(b) The relative uncertainties.

6.6.2 Consider a square with side L and area A = L?. The uncertainty of area A was
calculated in two ways.

¢ Mode 1

us=2L- u(L)

¢ Mode 2.

Consider that the square now has an L1 side and another L2. Thus, the area A = L1 -
L2
The area uncertainty can be calculated by:

oA\ (oA Y
Butif L1 =12 =L — u;; = u;, = ug,

up = \/2L%u2 =2 Luy

Why was the result for mode one different from that of mode 2? Where is the error in
the solution?

6.6.3 A bearing factory tests the uniformity of the spheres’ diameter, weighing them.
The percentage uncertainty of the mass is 1.00 %. If all spheres have the same
density, with relative uncertainty equal to 1.20 %, what is the uncertainty in the
diameter of a 1.000 cm sphere?

6.6.4 The thickness of a 200-page book is (3.0 + 0.1) cm. Determine:

(a) The absolute uncertainty of the book’s thickness
(b) The relative uncertainty of the book’s thickness
(c) The percentage uncertainty of the book’s thickness
(d) The thickness of a single sheet of the book

(e) The percentage uncertainty of item (d)

6.6.5 A rectangular block of wood has length L = (10.0 + 0.1) cm, width
W= (5.0 £ 0.1) cm, height H = (2.0 + 0.1) cm, and mass M = (50.0 + 0.1)
g. All uncertainties are declared with k = 2.00 and 95.45 %.
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Determine:

(a) The density of the rectangular wood block.

(b) The uncertainty of the density with all sources of uncertainty considered.

(c) The uncertainty of the density neglects all sources of uncertainty except that
of more significant relative uncertainty.

(d) Compare the results of items (b) and (c) and declare your conclusions.

6.6.6 The expression determines the volume of a sphere:

Considering its diameter as d = (1.00 + 0.01) cm, with k£ = 2.00 and 95.45 %,
determine:

(a) The volume V.

(b) The percentage uncertainty of d.

(c) The uncertainty of volume by the derivative method.

(d) The uncertainty of volume by the method of relative uncertainties.

6.6.7 The expression determines the frequency of a circuit:

1
2nv/ LC

where L is the inductance and C capacitance. If the percentage uncertainty of L is
known at 5 % and the percentage uncertainty of C at 20 %, determine the value of
the percentage uncertainty of frequency f.

6.6.8 The free fall of a body obeys the equation:

f=

2
_ 8t
Y=

where g is the acceleration of local gravity, and y is the height of the fall. If
y = (1.000 + 0.001) m with k = 2.43 and 95.45 % and ¢ = (0.45 + 0.01) s with
k = 2.23 and 95.45 %, calculate:

(a) Relative uncertainty of y.

(b) Relative uncertainty of ¢.

(c) The value of g.

(d) Gravity measurement uncertainty to 95.45 %.

(e) Could you neglect any source of uncertainty, or is it necessary to complete an
uncertainty analysis?
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Fig. 6.5 Power Dissipated
by a resistor

Fig. 6.6 Mass
measurement. (Made by the
authors)

M4 o M1

6.6.9 Knowing that the electrical power (P) dissipated by a resistor can be calculated
by the following expressions (Fig. 6.5).

(@) P=V.L
(b) P=R.P"
(c) P= V>R

Evaluate the best way to measure power P on resistor R, which has the lowest
measurement uncertainty.
Data:

R=(10.0 +0.1) Q, k = 2.43 and 95.45 %
I=(10.0 +0.1) A, k = 2.23 and 95.45 %
V=(100 + 1) V, k= 2.21 and 95.45 %

6.6.10 A chemist measured the mass (M) of a product using the following scale
(Fig. 6.6):

Data:

M, =(128.0+02) g
M, = (564 +04) g
My=(39.7+0.7)¢g

Considering the scale in equilibrium, the uncertainties declared with k = 2.00 and
95.45 %, calculate the value of mass M4 and its measurement uncertainty.

6.6.11 To calculate a car’s consumption (C = km/L) on a trip, the car tank was filled,
and the odometer was zeroed. In a particular stretch of the route, the car was
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Table 6.3 Blocks composition

Number of blocks Composition

112 One block: 1.0005 mm

Nine blocks: (1.001 to 1.009) mm (step 0.001 mm)
49 blocks: (1.01 to 1.49) mm (step 0.01 mm)

49 blocks: (0.5 to 24.5) mm (step 0.5 mm)

Four blocks: (25 to 100) mm (step 25 mm)

Table 6.4 Blocks uncertainty Biock size (mm) Uncertainty (pm)
<10 0.20
>10 and <25 0.30
>25 and <50 0.40
>50 and <75 0.50
>75 and <100 0.60

replenished with (38.0 + 0.2) L of gasoline, filling its tank. Arriving at the final
destination, the automobile was again replenished with (42.8 + 0.1) L, complet-
ing its tank. The total distance traveled indicated by the odometer was
(834.5 + 2.5) km. What was fuel consumption by km/L and its measurement
uncertainty?

Adopt k = 2.00 and 95.45 % for declared uncertainties.

6.6.12 We have a set of standard blocks with the following characteristics
(Table 6.3):

Let us consider the uncertainty for the blocks, as shown in Table 6.4. All with
k =2.00 and 95.45 %:

We need to calibrate a micrometer at point 72.467 mm.

(a) Which blocks should be used as standard in this calibration to obtain the
lowest measurement uncertainty?
(b) What is the value of this uncertainty?

6.6.13 A standard resistor, with a nominal value of 100, was measured by checking
the voltage (V') and the electric current (7) that passed through it. A voltmeter and
a calibrated ammeter were used for this measurement. The voltage and current
measurement sequence results, the mathematical model that defines the measure-
ment, and information related to the equipment used to measure the resistor are
described in Table 6.5.
The mathematical model that defines the measurand (R): R = %
V is the mean voltage, and i is the mean electric current.
Metrological characteristics of the voltmeter and ammeter used in the mea-
surement (Table 6.6).
Based on this information, answer the following:
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Table 6.5 Voltage and cur- Measurement Voltage (V) Electric current (A)
rent measurements 1 199.9 1.99

2 200.2 2.02

3 200.1 1.98

4 199.9 1.99

5 199.9 1.99

6 200.0 2.00

7 200.0 2.00

8 199.9 1.99

9 200.0 1.99

Table 6.6 Voltmeter and ammeter characteristics

Voltmeter Ammeter

Bias (V) +0.1 Bias (A) —0.04
Uncertainty (V) 0.2 Uncertainty (A) 0.02
(k = 2.00 and 95.45 %) (k = 2.00 and 95.45 %)

(a) The value of the resistor

(b) The resistor bias

(c) The correction of the value of the resistor
(d) The expanded uncertainty



Chapter 7 ®)
Industrial Calibration Creck o

7.1 Calibration Concept

According to VIM—2.39, calibration differs from adjustment and verification. See
the calibration definition:

Operation that, under specified conditions, in a first step, establishes a relation
between the quantity values with measurement uncertainties provided by mea-
surement standards and corresponding indications with associated measurement
uncertainties and, in a second step, uses this information to establish a relation
for obtaining a measurement result from an indication.

NOTE 1 A calibration may be expressed by a statement, calibration function,
calibration diagram, calibration curve, or calibration table. In some cases, it
may consist of an additive or multiplicative correction of the indication with
associated measurement uncertainty.

NOTE 2 Calibration should not be confused with adjustment of a measuring system,
often mistakenly called “self-calibration,” nor with verification of calibration.
NOTE 3 Often, the first step alone in the above definition is perceived as being

calibration.

Note that, according to VIM, calibrating is confronting the metrological behavior
of a measuring instrument with a reference standard, which can be a standard
measurement instrument, a standard measurement system, a materialized measure,
or a certified reference material.

Common sense considers calibrating how to fix equipment. For this reason, many
professionals misunderstand that it is unnecessary to calibrate new equipment by
thinking it is in perfect condition. The equipment may be in perfect condition, but we
do not know its metrological characteristics, such as measurement error, measure-
ment uncertainty, instrumental bias, and hysteresis.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 189
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7.2 Calibration % Verification

VIM—2.44 defines verification as the “provision of objective evidence that a given
item fulfills specified requirements.”
These specified requirements can be:

* The manufacturer’s specifications;

* The measurement instrument hysteresis or linearity;

* The instrument measuring error compared to its specification or technical
standard.

Example 7.1 Maximum Permissible Error for Resistance Thermometer
The maximum permissible error for class A and class B resistance thermom-
eters, according to DIN-IEC 751/85 standard, is worth:

Class A: (0.15 + 0.002 T) °C.
Class B: (0.30 + 0.005 T') °C.

Where T is the value of the measurement temperature.

Example 7.2 Maximum Permissible Error for Materialized Measure
The maximum permissible error for a materialized measure, for example, a
standard mass, depending on its class, according to the International Recom-
mendation OIML R-111-1, is presented in Table 7.1.

Attention!
Do not confuse verification with calibration. In calibration, the measuring
uncertainty of the object must be determined, but this is not necessary for
verification. A calibration may cover a verification, but the opposite is not
valid. In this sense, a calibration becomes a more complex procedure than a
verification.

7.3 Measurement Standard

According to VIM—S5.1, the measurement standard is the realization of the defini-
tion of a given quantity, with a stated quantity value and associated measurement
uncertainty, used as a reference.

EXAMPLE 1 1 kg mass measurement standard with an associated standard mea-
surement uncertainty of 3 ug.

EXAMPLE 2 100 Q measurement standard resistor with an associated standard
measurement uncertainty of 1 uQ.

EXAMPLE 3 Caesium frequency standard with a relative standard measurement
uncertainty of 2 x 10°"°.
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EXAMPLE 4 Standard buffer solution with a pH of 7.072 with an associated
standard measurement uncertainty of 0.006.

EXAMPLE 5 Set of reference solutions of cortisol in human serum having a certified
quantity value with measurement uncertainty for each solution.

EXAMPLE 6: Reference material providing quantity values with measurement
uncertainties for the mass concentration of each of ten different proteins.

NOTE 1 A “realization of the definition of a given quantity” can be provided by a
measuring system, a material measure, or a reference material.

NOTE 2 A measurement standard is frequently used as a reference in establishing
measured quantity values and associated measurement uncertainties for other
quantities of the same kind, thereby establishing metrological traceability
through calibration of other measurement standards, measuring instruments,
or measuring systems.

NOTE 3 The term “realization” is used here in the most general meaning. It denotes
three procedures of “realization.” The first one consists in the physical realiza-
tion of the measurement unit from its definition and is realization sensu stricto.
The second, termed “reproduction,” consists not in realizing the measurement
unit from its definition but in setting up a highly reproducible measurement
standard based on a physical phenomenon, as it happens, e.g., in the case of
the use of frequency-stabilized lasers to establish a measurement standard for the
metre, of the Josephson effect for the volt or of the quantum Hall effect for the
ohm. The third procedure consists of adopting a material measure as a measure-
ment standard. It occurs in the case of the measurement standard of 1 kg.

NOTE 4 A standard measurement uncertainty associated with a measurement
standard is always a component of the combined standard measurement uncer-
tainty (see GUM:1995, 2.3.4) in a measurement result obtained using the mea-
surement standard.

Frequently, this component is small compared with other components of the com-
bined standard measurement uncertainty.

NOTE 5 Quantity value and measurement uncertainty must be determined at the
time when the measurement standard is used.

NOTE 6 Several quantities of the same kind or different kinds may be realized in one
device which is commonly also called a measurement standard.

NOTE 7 The word “embodiment” is sometimes used in the English language instead
of “realization.”

NOTE 8 In science and technology, the English word “standard” is used with at
least two different meanings: as a specification, technical recommendation, or
similar normative document (in French “norme”) and as a measurement stan-
dard (in French “étalon”). This Vocabulary is concerned solely with the second
meaning.

NOTE 9 The term “measurement standard” is sometimes used to denote other
metrological tools, e.g., ‘software measurement standard’ (see ISO 5436-2).

A measurement standard is presented as a system, a materialized measure, or a
certified reference material. Regardless of how they present themselves,
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Fig. 7.1 Hierarchy of
measurement standards

International System
of Units -SI

AN

International Standards

National Standards

Reference Standards

Working Standards

measurement standards often have a small measurement uncertainty, contributing
little or almost nothing to the uncertainty after a calibration process. Their measure-
ment uncertainty should be combined with the other measurement uncertainties
involved in the calibration process.

A measurement standard serves as a reference for calibrating other hierarchically
inferior standards in terms of accuracy and measurement uncertainty. Figure 7.1
presents the various types of measurement standards in the decreasing sense of their
metrological hierarchy.

The International System of Units (SI) was presented and discussed in Chap. 1.

7.3.1 International Measurement Standard

In the VIM—5.10, the definition of an international measurement standard is a
measurement standard recognized by signatories to an international agreement and
intended to serve worldwide.

EXAMPLE 1 The international prototype of the kilogram. (Authors note: At the time
of the 3rd edition of VIM, 2012, this was still the definition of the international
mass standard—kilogram. From 2019, the new definition is: “It is defined by
taking the fixed numerical value of the Planck constant 4 to be 6.626070 15 x 10~
3* when expressed in the unit J s, which is equal to kg m” s/, where the meter and
the second are defined in terms of ¢ and Av,.”)

EXAMPLE 2 Chorionic gonadotrophin, World Health Organization (WHO) 4th
international standard 1999, 75/589, 650 International Units per ampoule.



7.3 Measurement Standard 195

EXAMPLE 3 VSMOW?2 (Vienna Standard Mean Ocean Water) distributed by the
International Atomic Energy Agency (IAEA) for differential stable isotope
amount-of-substance ratio measurements.

Knowing a Little More ...
The standard kilogram

King Louis X VI of France summoned a group of sages to elaborate a new
measurement system, establishing the foundations for the “decimal metric
system,” which evolved into modern SI. The original idea of the King’s
commission (which included remarkable, like Lavoisier) was to create a
mass unit that, by definition, would be the mass of a liter of water at the ice
point (i.e., essentially 1 kg). The definition should be incorporated into a
standard mass prototype. Given that the masses being measured at that time
were much lower than the kilo, they decided that the unit of mass would be the
“gram.” However, since a gram standard is difficult to use as well as to handle
(too small), the new definition should be incorporated into a prototype of a
kilogram. The republican government’s decision probably had political moti-
vation, after all, these same people condemned Lavoisier to the guillotine.
Anyway, it remains to regret that a base unit has a “prefix” in the name. The
kilogram prototype has been conserved in the BIPM since 1889, when it was
sanctioned by the First General Conference on Weights and Measures. It is
cylindrically, with a diameter and height of about 39 mm, and made of a 90%
platinum alloy and 10% iridium. In November 2018, at the General Confer-
ence on Weights and Measures, the highest revision of the International Unit
System (SI) was made since 1960. In this conference, four basic units of
measurement were redefined: kilogram, ampere, kelvin, and mol. The purpose
of the change was to relate these units to fundamental, not arbitrary constants,
as has been done so far.

7.3.2 National Measurement Standard

In the VIM—35.3, the definition of a national measurement standard is a mea-
surement standard recognized by national authority to serve in a state or
economy as the basis for assigning quantity values to other measurement stan-
dards for the kind of quantity concerned.

Therefore, these standards are devices maintained by organizations and national
laboratories worldwide. They represent the fundamental and derived quantities and
are calibrated independently through absolute measurements.

INMETRO is responsible for maintaining national standards in Brazil both for
those existing in their laboratories and those in the designated laboratories.
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7.3.3 Reference Measurement Standard

In VIM—S5.6, a reference measurement standard is a measurement standard
designated for the calibration of other measurement standards for quantities of
a given kind in a given organization or at a given location.

These standards should not be employed for daily measurement work and, prefer-
ably, have to be kept under specific conditions of temperature and humidity. They
are used for the calibration or verification of working standards.

7.3.4 Working Measurement Standard

The definition of a working measurement standard in VIM—S5.7 is a standard that
is routinely used to calibrate or verify measuring instruments or systems.

NOTE 1 A working measurement standard is usually calibrated with respect to a
reference measurement standard.

NOTE 2 In relation to verification, the terms “check standard” or “control stan-
dard” are also sometimes used.

7.4 Certified Reference Material (CRM)

Certified reference material is a reference material, accompanied by documentation
issued by an authoritative body and providing one or more specified property values
with associated uncertainties and traceabilities, using valid procedures.

EXAMPLE Human serum with assigned quantity value for the concentration of
cholesterol and associated measurement uncertainty stated in an accompanying
certificate, used as a calibrator or measurement trueness control material.

NOTE 1 ‘Documentation’ is given in the form of a ‘certificate’ (see ISO Guide 31:
2000).

NOTE 2 Procedures for the production and certification of certified reference
materials are given, e.g., in ISO Guide 34 (actually ISO 17034) and ISO Guide
35.

NOTE 3 In this definition, “uncertainty” covers both ‘measurement uncertainty’ and
‘uncertainty associated with the value of a nominal property,’ such as for identity
and sequence. “Traceability” covers both ‘metrological traceability of a quantity
value’ and ‘traceability of a nominal property value.’

NOTE 4 Specified quantity values of certified reference materials require metrolog-
ical traceability with associated measurement uncertainty.
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NOTE 5 ISO/REMCO has an analogous definition, but uses the modifiers “metro-
logical” and “metrologically” to refer to both quantity and nominal property.
[VIM—S5.14].

A reference material can be a pure substance or a gas, liquid, or solid mixture.
Examples of reference materials are water used in viscometer calibration, sapphire
used in calorimetry heat capacity calibration, and solutions used in chemical
analysis.

A certificate of analysis with one or more property or physical characteristic
values always accompanies a certified reference material. These materials are certi-
fied by procedures that establish the traceability for the exact obtaining of the unit in
which the property values are expressed. Each certified value is accompanied by
uncertainty to an established confidence level.

The following text, related to the preparation of a CRM, was obtained from the
website <https://en.wikipedia.org/wiki/Certified_reference_materials>.

Sample preparation.

Detailed sample preparation depends on the type of material. Pure standards are
most likely prepared by chemical synthesis and purification and characterized by
determining remaining impurities.

Natural matrix CRMs contain an analyte or analytes in a natural sample (for
example, lead in fish tissue). They are typically produced by homogenizing a
naturally occurring material and measuring each analyte. Due to the difficulty in
production and value assignment, they are usually made by national or transna-
tional metrology institutes like NIST (USA), BAM (Germany), KRISS (Korea), and
EC JRC (European Commission Joint Research Centre).

Natural materials are rarely homogeneous on the scale of grams so production of
a solid natural matrix reference material typically involves processing to a fine
powder or paste. Homogenization can have adverse effects, for example on proteins,
so producers must take care not to over-process materials.

The stability of a certified reference material is also essential, so a range of
strategies may be used to prepare a reference material that is more stable than the
natural material it is prepared from. For example, stabilizing agents such as
antioxidants or antimicrobial agents may be added to prevent degradation, liquids
containing certified concentrations of trace metals may have their pH adjusted to
keep metals in solution, and clinical reference materials may be freeze-dried for
long-term storage if they can be reconstituted successfully.

7.5 Selection of the Measurement Sstandard

For the value of a measurement standard or standard measurement system to be
accepted as a reference value, its measurement accuracy and uncertainty must be
lower than those of the measurement system to be calibrated. Therefore, it is possible
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to imagine that the smaller your measurement uncertainty, technically, the better the
standard, but the more expensive it will be as well.

We must always seek a technical and economic balance, keeping in mind that the
final uncertainty (Ur) will be the combination of the uncertainty of the measurement
system that we want to calibrate (Ucys) with the uncertainty of the standard
measurement system (Ugyys), that is,

Ur=/ Utns + Usus (7.1)

The lower the uncertainty of the SMS compared to CMS, the lower its influence
on the final result. Let us evaluate Uf for some Ugys values compared to Ucyys. If
SMS uncertainty were infinitely inferior to CMS uncertainty, we would have the
uncertainty Ur equal to CMS uncertainty; the influence of SMS measurement
uncertainty would tend to be zero. Let us look at the following simulations:

(a) Considering Ugys = Ucys, we have:

Up= \/ Ugris + Usngs = \/2.U2CMS =1.41 Ucys

We observe that the influence of SMS uncertainty is approximately 41% of the
final uncertainty, Uy..

(b) Considering Usys = 1/2 Ucps, we have:

UF: \/U%'MS + Ung: \/(1 + IA) U%‘MS: 1.12 UCMS

We observe that the influence of SMS uncertainty is approximately 12% of the
final uncertainty, Uy..

(c) Considering Usys = 1/3 Ucms, we have:

Up= \/ Uzpis + Ubpyys = \/ (1 + 14) UZys=1.054 Ucys

We observe that the influence of SMS uncertainty is approximately 5.4% of the
final uncertainty, Uy..

(d) Considering Usys = 1/4 Ucps, we have:

UF: \/U%'MS + UgMS = \/(1 + 1/16) U%‘MS: 1032 UCMS
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We observe that the influence of SMS uncertainty is approximately 3.2% of the
final uncertainty, Uf.

(e) Considering Ugys = 1/5 Ucwms, we have:

Up= \/UZCMS + Ugygs = \/(1 + Vs) Ugys = 1.02 Ucuss

We observe that the influence of SMS uncertainty is approximately 2% of the final
uncertainty, Up.

(f) Considering Usms = 1/10 Ucms, We have:

Ur= \/UéMS + Ugys = \/(1 + Vioo) Ugys =1.005 Ucws

We observe that the influence of SMS uncertainty is approximately 0.5 % of the
final uncertainty, Uf.

Suppose we adopt a standard with measurement uncertainty equal to or less than
one-tenth of the expected uncertainty for the CMS. In that case, SMS will not
contribute to the uncertainty, with SMS passing unnoticed by the CMS.

Important
In practice, if we adopt SMS with measurement uncertainty equal to or less
than % of the CMS, we will have an excellent condition.

7.6 Solved Exercises of Measurement Instrument
Calibration

We can use a technical standard or even an orientation guide whenever we want to
calibrate a measurement instrument. For example, if we wish to calibrate thermo-
couples, we can use the guide Calibration of Thermocouples—EURAMET cg-§.

If we wish to calibrate manometers, we can use the Guidelines on the Calibration
of Electromechanical and Mechanical Manometers—EURAMET Calibration Guide
No. 17.

Thus, we are led to believe that the entire calibration process, including the choice
of standards, the assembly of the experiment, and the calculation of the measurement
uncertainty, will be found in all technical standards. Deceit! The part of the mea-
surement uncertainty calculation is not usually provided in the technical calibration
standards, so we are at a “dead end.”
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Important

Calibration technical standards usually do not contain information on calcu-
lating measurement uncertainty. Therefore, you are responsible for
performing them!

To solve this problem, interested parties must take courses in measurement and
calibration uncertainty in their field of interest (temperature, pressure, electricity,
etc.).

Here are some examples of measuring uncertainty calculation.

Solved Exercise 7.1: Glass Liquid Thermometer (GLT) Calibration.

A GLT, with 0.5 °C resolution, is calibrated against a 0.1 °C resolution standard.
The calibration bath has +0.04 °C stability.! The standard thermometer calibration
certificate is shown in Fig. 7.2. Determine the thermometer uncertainty and its bias to
20 °C, 40 °C, and 100 °C (Table 7.2).

Solution:
I. Point 20 °C

(a) Standard and object mean value

Xsta = 20.0° C — bias correction — Xy = (20.0 —0.2)°C=19.8°C

Note that the standard indication has been corrected because, as seen in the
certificate, it has a bias of 0.2 °C at point 20 °C.

Xopj =20.5°C
(b) Object bias

B=(20.5-19.8)°C=0.7°C
(c) Type A uncertainty—object repeatability

N

Un_ pi = ——
A —obj \/ﬁ

(d) Standard uncertainty from the calibration certificate.

=0

This data is extracted from the standard thermometer calibration certificate. As
the certificate always informs the expanded measurement uncertainty (95.45 %) and

"Stability is defined as fluctuation of calibration bath temperature after reaching the thermal
equilibrium.
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METROLOGY & UNCERTAINTY OF MEASUREMENT
PP&AM Address: 10012 Uncertainty Propagation Street
Calibration E-mail: m&um@uncertainty.com
Laboratory | phone: 00 11 22 33 44 55
CALIBRATION CERTIFICATE N°" 1234 / 2024
Customer Information

Company: | PPN&AM Metrology
Address: | 17025, Measurement Error Street
E-mail: | ppn&am@ppn&am.com
Phone: | 00 34 91 01 02 03
Calibrated object information

Manufacturer: High Temperature Class: NA
Description: Glass thermometer Resolution: 0.1 °C
Model: Partial immersion Range: (0 — 100) °C

Serial number: 123321123321

Method and procedure used
Calibration made by direct comparison, as described in the SOP 001 procedure - Standard Operating
Procedure for glass thermometers.

Traceability
Description TAG Model Manufacturer | Certificate Serial
Standard thermometer Pt-107 Pt-100 Ohms 107/24 ABC123
Four wires
Calibration results
Indication Standard Object Bias Uncertainty k Degree of

°C °C °C °C °C freedom
0 0.00 0,1 0,1 0.2 2.37 8

10 10.00 10.0 0.0 0.2 2.05 47
20 20.00 20.2 0.2 0.2 2.00 Infinite
30 30.00 30.0 0.0 0.3 2.05 47
40 40.00 40.0 0.0 0.3 2.02 102
50 50.00 50.1 0.1 0.3 2.11 23
60 60.00 60.1 0.1 0.4 2.06 40
70 70.00 70.2 0.2 0.5 2.07 35
80 80.00 80.0 0.0 0.5 2.06 40
90 90.00 90.1 0.1 0.5 2.02 102
100 100.00 100.2 0.2 0.6 2.00 Infinite

Environmental | Temperature | (20.6 + 0.5) | Humidity (56 +5) Pressure (1018 +1)
data °C % hPa
Environment: (x ) Stable () Unstable ( x) Acclimatized

These results refer exclusively to the object described in this document in the specified conditions, not
extending to any other, even if it is similar. The partial reproduction of this document is not allowed.
Expanded uncertainty (U) reported corresponds to a coverage probability of 95.45%.

Calibration date: 3/6/2024

Emission date: 3/6/2024

Galileo Galilei Lord Kelvin
Metrologist technician Authorized firmer

Page 1/1
Fig. 7.2 Standard thermometer calibration certificate
we need to combine it with the other uncertainties in standard form (a standard

deviation), we must divide it by the k factor, informed in the instrument’s calibration
certificate standard.
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Table 7.2 Result of GLT

e Nominal value (°C) Standard (°C) Object (°C)

calibration 20 200 205
20.0 20.5

20.0 20.5

20.0 20.5

40 40.1 40.5

40.1 40.5

40.1 40.5

40.1 40.5

100 99.8 100.5

99.8 100.5

99.8 100.5

99.8 100.0

Ucertif = % =0.1°C

(e) Bath stability uncertainty.

After stabilization, the variation in bath temperature follows a uniform probability
distribution. In this case, as stability is provided as +0.04 °C, the interval of bathing
temperature variation has already been divided by two, and thus, applying the
uniform distribution, divide by V3.

0.04

Ustability = —= = 0.0231°C
tability \/§

(f) GLT resolution uncertainty.

We will adopt a uniform probability distribution, since the probability of finding a
reading value varies evenly.

i _ 0.5
GLT res \/ﬁ

(g) Standard resolution uncertainty.

=0.14434°C

We will adopt a uniform probability distribution, since the probability of finding a
reading value varies evenly.

0.1 _ 0.0289°C

Ustd res = ﬁ
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Table 7.3 Metrological Metrological characteristics (°C)

characteristics Object mean 405
Corrected standard mean 40.1
Bias 0.4
Type A uncertainty—Repeatability 0.0
Standard uncertainty from certificate 0.1485
Stability uncertainty 0.0231
GLT resolution uncertainty 0.1443376
Standard resolution 0.0289
Combined uncertainty 0.2104
Effective degree of freedom 120
Coverage factor, k 2.02
Expanded uncertainty, 95.45 % 0.4

(h) Combined uncertainty

_ 2 2 2 2 2 _ o
Ue= \/MA + Weers + Ustap + UGLT res + Ustd res = 0.1795°C

(i) Effective degree of freedom

4

U

Veff = — 7 ) o o o =00
A4 Ucerr - Zstab 4 ZGLT res | Zstd res
4—-1 v 0 0 S}

(j) Coverage factor, k
Vgy =00 — k=2.00
(k) Expanded uncertainty 95.45%

U=kae=0359°C

We must round the expanded uncertainty to a decimal digit, since the object’s
GLT has a resolution of 0.5 °C. Thus, the result will be: U = 0.4 °C.

For the other calibration points, the calculation methodology is the same. Let us
present only the tables with the final results.

I1. Point 40 °C (Table 7.3)
II1. Point 100 °C (Tables 7.4 and 7.5)

Solved Exercise 7.2: Bourdon Gauge Calibration
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Table 7.4 Metrological

characteristics

7 Industrial Calibration
Metrological characteristics (°C)
Object mean 100.5%
Corrected standard mean 99.6
Bias 0.9
Type A uncertainty—Repeatability 0.125
Standard uncertainty from certificate 0.3
Stability uncertainty 0.0231
GLT resolution uncertainty 0.1443376
Standard resolution 0.0289
Combined uncertainty 0.3575
Effective degree of freedom 168
Coverage factor, k 2.01
Expanded uncertainty, 95.45 % 0.7

# Since the GLT object only reads from 0.5 to 0.5 °C, we should
round the result to 100.5 °C.

Table 7.5 Result of GLT calibration

Standard (°C) Object (°C) Bias (°C) Uncertainty (°C) k v
19.8 20.5 +0.7 0.4 2.00 00
40.1 40.5 +0.4 0.4 2.02 120
99.6 100.5 +0.9 0.7 2.01 168

Table 7.6 Bourdon gauge calibration result

Object Standard (kgf/cm?)

(kgf/em?) Charge 1 Discharge 1 Charge 2 Discharge 2
5.0 5.50 5.50 5.50 5.25

15.0 16.25 15.75 15.50 15.50

25.0 26.00 25.50 25.50 26.00

35.0 36.25 36.00 35.50 36.00

40.0 41.00 41.00 41.00 41.00

A Bourdon gauge (object), class 2.5 %, with a measurement range 0 to 40 kgf/
cm?, was calibrated against a standard gauge class 0.6 %. Consider the resolution of
the calibration gauge of 0.5 kgf/cm?. The standard gauge resolution is 0.05 kgf/cm®

(Table 7.6).

Calibration Instructions The pressure value on the object gauge is fixed, and the
reading of charge and discharge pressure is performed on the standard gauge (see the
standard certificate in Fig. 7.3) for hysteresis, error, and bias.

Solution Before we start the uncertainty calculations of this exercise, we will
correct the standard gauge measurement values (Table 7.4). Correction implies
eliminating the error or measurement bias at each point measured by the standard
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PP&AM

Calibration Laboratory

METROLOGY & UNCERTAINTY OF MEASUREMENT
Address: 10012 Uncertainty Propagation Street

E-mail: m&um@u

ncertainty.com

Phone: 00 11 22 33 44 55

CALIBRATION CERTIFICATE N°*' 4321 / 2024

Customer Information

Company:
Address:
E-mail:
Phone:

PPN&AM Metrology
17025, Measurement Error Street

ppn&am@ppn&a
003491010203

m.com

Calibrated object information

Model: BouP 12

Manufacturer: Bourdon Pressure Co.
Description: analog pressure gauge

Serial number: 123321123321

Class: 0.6
Resolution: 0.05 kgf/cm?
Range: (0 — 60) kgf/cm?

Method and procedure used

Calibration made by direct comparison, as described in the POE 002 procedure - Standard Operating
Procedure for Pressure Gauge.

Traceability

Description TAG Model Manufacturer | Certificat Serial
e
Thermohygrometer TH-10 Digital THMetro 207/24 ABC123
Barometer BA-20 Analog BA 215/24 XYZ00
Standard pressure gauge MP-99 Digital MPM 789/24 GFD873
Calibration results
Indication | Indication Standard Object Bias Uncertainty K Degree of
kPa kgf/cm? kgf/cm? kgf/cm? kgf/cm? kgf/cm? freedom
0 0 0.000 0.00 0.00 0.05 2.00 Infinite
588 6 6.100 6.00 -0.10 0.05 2.00 Infinite
1177 12 12.000 12.00 0.00 0.05 2.00 Infinite
2354 24 24.005 24.00 0.00 0.06 2.10 27
2942 30 30.005 30.00 0.00 0.06 2.10 27
3530 36 36.100 36.00 -0.10 0.06 2.15 18
4119 42 42.100 42.00 -0.10 0.07 2.15 18
4707 48 48.150 48.00 -0.15 0.07 2.15 18
5296 54 54.250 54.00 -0.25 0.08 2.20 14
5884 60 59.700 60.00 0.30 0.08 2.20 102
Environmental | Temperature | (20.6 + 0.5) | Humidity (56 +5) Pressure (1018 +1)
data °C % hPa
Environment: (x ) Stable () Unstable (x ) Acclimatized

These results refer exclusively to the object described in this document in the specified conditions, not
extending to any other, even if it is similar. The partial reproduction of this document is not allowed.
Expanded uncertainty (U) reported corresponds to a coverage probability of 95.45%.

Emission date:

Calibration date: 6/3/2024
6/3/2024

Galileo Galilei

Metrologist technician

Lord Kelvin

Authorized firmer

Page 1/1

Fig. 7.3 Standard Bourdon gauge calibration certificate
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Table 7.7 Corrected values of the standard

Object Standard (kgf/cm?)

(kgflcm?) Charge 1 Discharge 1 Charge 2 Discharge 2
5.0 5.60 5.60 5.60 5.35

15.0 16.25 15.75 15.50 15.50

25.0 26.00 25.50 25.50 26.00

35.0 36.35 36.10 35.60 36.10

40.0 41.10 41.10 41.10 41.10

instrument. To do so, consult the error or bias in the standard instrument calibration
certificate (Fig. 7.3) (Table 7.7).

Point 5 kgf/cm?”

(a) Measurement error.

E=X—Vr=5.0-5.60= —0.6 kgf /cm?

To determine the gauge measurement error, we must subtract from the value read
by the calibration gauge (object) the standard’s value farther from the object’s value.
That is, the standard value will generate the most significant measurement error.

(b) Type A uncertainty

un= == = 2125 _ 0625 ket Jom?

Vi~ VA

Note that once we fix the value in the object, the standard will feel its
repeatability.

(c) Uncertainty from certificate
Ueert = 0.05/2 =0.025 kgf /cm?
(d) Hysteresis uncertainty

L H _560-535
CAN ) V12

(e) Object resolution uncertainty.

=0.0722 kgf /cm?

We will adopt a triangular probability distribution, since the probability of finding
a reading value at the center point of the distribution is greater than at the ends.
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95 _4.10206 kegf /cm?

Uobj res =
Ve a4

(f) Standard resolution uncertainty

0.05

Ustg ros = —— = 0.0144 kef /cm?
std res \/ﬁ g/

(g) Combined uncertainty

ue =/0.0625> + 0.025> + 0.0722% 4 0.1026> + 0.01442 = 0.143 kgf /cm”

(h) Effective degree of freedom

u4

— (4 =

Veff = — 4 ut ut 4 =82
iy + Upprs o Duosty Bobires Ystd_res

4—1 v 00 0 0

(i) Coverage factor, k

Excel® : INV.T.BC (0.0455;82) — k=2.03

(j) Expanded uncertainty

U=2.03x0.143 =0.3 kgf /cm?

IL. Point 15 kgf/cm? (Table 7.8).
I1I. Point 25 kgf/cm? (Table 7.9)
IV. Point 35 kgf/cm?® (Table 7.10)
V. Point 40 kgf/cm? (Table 7.11)

Object accuracy class: 2.5 % (Table 7.12)

At points 15, 25, and 40, the object error exceeded the class limit error (2.5 %).
This shows that this gauge needs to be adjusted (Table 7.13).
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Table 7.8 Metrological
characteristics

Table 7.9 Metrological
characteristics

Table 7.10 Metrological
characteristics

7 Industrial Calibration

Metrological characteristics (kgflcm?)
Object 15.0
Error —-1.2
Type A uncertainty—Repeatability 0.1768
Standard uncertainty from certificate 0.0286*
Hysteresis uncertainty 0.14434
Object resolution uncertainty 0.10206
Standard resolution 0.0144
Combined uncertainty 0.2523
Effective degree of freedom 12
Coverage factor, k 2.23
Expanded uncertainty, 95.45 % 0.6

2As the point is between (12 and 24) kgf/cm® and the respective
uncertainties between (0.05 and 0.06) kgf/cm?, we must adopt the
more significant measurement uncertainty, in this case, 0.06 kgf/
cm?. The reason is to make the most conservative decision possi-
ble, adopting the most significant uncertainty in the interval.

Metrological characteristics (kgf/em?)
Object 25.0
Error —1.0
Type A uncertainty—Repeatability 0.14434
Standard uncertainty from certificate 0.0286
Hysteresis uncertainty 0.14434
Object resolution uncertainty 0.10206
Standard resolution 0.0144
Combined uncertainty 0.2307
Effective degree of freedom 19.6
Coverage factor, k 2.14
Expanded uncertainty, 95.45 % 0.5
Metrological characteristics (kgf/em?)
Object 35.0
Error —1.4
Type A uncertainty—Repeatability 0.1573
Standard uncertainty from certificate 0.0279
Hysteresis uncertainty 0.14434
Object resolution uncertainty 0.10206
Standard resolution 0.0144
Combined uncertainty 0.2389
Effective degree of freedom 16
Coverage factor, k 2.19
Expanded uncertainty, 95.45 % 0.5
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Table 7.11 Metrological Metrological characteristics (kgf/cm?)
characteristics Object 400
Error —1.1
Type A uncertainty—Repeatability 0.0
Standard uncertainty from certificate 0.03256
Hysteresis uncertainty 0.0
Object resolution uncertainty 0.10206
Standard resolution 0.0144
Combined uncertainty 0.1086
Effective degree of freedom 2200
Coverage factor, k 2.00
Expanded uncertainty, 95.45 % 0.2
Table 7.12 Error Point (kgf/cm?) Error (kgf/cm?) Error (%)
5.0 —0.6 1.5
15.0 —-1.2 3.0
25.0 —1.0 25
35.0 —1.4 32
40.0 —1.1 2.8
Table 7.13 Result of Object Uncertainty
Bourdon gauge calibration kgf/cm? Error kgf/cm? kgf/cm? k )
5.0 —0.6 0.3 2.03 82
15.0 —-1.2 0.6 223 12
25.0 -1.0 0.5 2.14 19
35.0 —1.4 0.5 2.19 16
40.0 —1.1 0.2 2.00 2200

Solved Exercise 7.3: Digital Voltmeter Calibration
Calibration conditions:

* Object: digital voltmeter
* Resolution: 0.01 mV
* Range: (0 to 200) mV

. N T\
Parasite uncertainty” = ek

Calibration Instructions using a voltage source, fix the value in the voltmeter in

calibration (object) and read the standard voltmeter (Table 7.14).

Before we start the uncertainty calculations of this exercise, we will correct the
standard voltmeter measurement values Table 7.5). Correction implies eliminating
the error or measurement bias at each point measured by the standard instrument.
Therefore, consult the error or bias in the standard instrument calibration certificate
(Fig. 7.4) (Table 7.15).

2Uncertainty from static electricity at voltmeter connection terminals.
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Table 7.14 Calibration Standard (IIIV)

results .
Object (mV) 1 2 3 4
40.00 40.110 40.150 40.160 40.120
80.00 80.120 80.160 80.140 80.130
120.00 120.150 120.170 120.190 120.190
160.00 160.230 160.180 160.170 160.180
200.00 200.210 200.230 200.260 200.270

Solution:

Point 40.00 mV

(a) Error

E=x—Vr=40.00—-40.160= —0.16 mV
(b) Type A uncertainty

wp= —— = 0.0238 _ 0119 mv

vnoo V4

Note that once we fix the value in the object, the standard will feel its
repeatability.

(c) Uncertainty from certificate
Ueerr = 0.002/2 =0.001 mV

(d) Parasite uncertainty

Upar = 2”7;/ =0.0011547 mV
(e) Object resolution
0.01 =0.002887 mV

Uobj res = —r—=
obj re. \/ﬁ

We will adopt a uniform probability distribution even when setting the reading in
the object, since the voltmeter is digital. The probability of finding a reading value
varies evenly.



7.6 Solved Exercises of Measurement Instrument Calibration 211

PP&AM METROLOGY & UNCERTAINTY OF MEASUREMENT
Address: 10012 Uncertainty Propagation Street
Calibration E-mail: m&um@uncertainty.com
Laboratory Phone: 00 11 22 33 44 55
CALIBRATION CERTIFICATE N*" 1324 / 2024
Customer Information
Company: | PPN&AM Metrology
Address: | 17025, Measurement Error Street
E-mail: | ppn&am@ppn&am.com
Phone: | 0034910102 03
Calibrated object information

Manufacturer: Voltmeters Co.
Description: digital voltmeter
Model: VTVM-1

Class: NA

Resolution: 0.001 mV
Range: (0 —200) mV

Serial number: 123321123321

Method and procedure used
Calibration made by direct comparison, as described in the POE 003 procedure - Standard Operating
Procedure for Voltmeters.

Traceability
Description TAG Model Manufacturer | Certificate Serial
Thermohygrometer TH-10 Digital THMetro 207/24 ABC123
Barometer BA-20 Analog BA 215/24 XYZ00
Standard voltmeter VP-99 Digital VPM 089/24 FKL777
Calibration results
Indication Standard Object Bias Uncertainty k Degree of
mV mV mV mV mV freedom
0 0.0000 0.000 0.000 0.002 2.00 Infinite
40 40.0005 40.001 0.000 0.002 2.00 Infinite
80 80.0000 80.003 0.003 0.002 2.00 Infinite
120 120.0005 120.005 0.004 0.002 2.00 Infinite
160 159.9995 160.005 0.005 0.002 2.00 Infinite
200 199.9995 200.005 0.005 0.002 2.00 Infinite
Environmental | Temperature | (20.6 +0.5) | Humidity (56 +5) Pressure (1018 +1)
data °C % hPa
Environment: (x ) Stable () Unstable ( x) Acclimatized

These results refer exclusively to the object described in this document in the specified conditions, not
extending to any other, even if it is similar. The partial reproduction of this document is not allowed.
Expanded uncertainty (U) reported corresponds to a coverage probability of 95.45%.

Calibration date: 6/8/2024
Emission date:  6/8/2024

Lord Kelvin
Authorized firmer

Galileo Galilei
Metrologist technician

Page 1/1

Fig. 7.4 Standard voltmeter calibration certificate

(f) Standard resolution

L0001
std res — T —
V12

(g) Combined uncertainty

=0.0002887 mV
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Table 7.15 Corrected values Standard (mV)

of the standard Object (mV) 1 5 3 4
40.00 40.110 40.150 40.160 40.120
80.00 80.120 80.160 80.140 80.130
120.00 120.147 120.167 120.187 120.187
160.00 160.226 160.176 160.166 160.176
200.00 200.205 200.225 200.255 200.265

Table 7.16 Metrological Metrological characteristics (mV)

characteristics Object 30.00
Error —0.16
Type A uncertainty—Repeatability 0.0085
Standard uncertainty from certificate 0.001
Parasite uncertainty 0.0011547
Object resolution uncertainty 0.002887
Standard resolution 0.0002887
Combined uncertainty 0.009111
Effective degree of freedom 4
Coverage factor, k 3.31
Expanded uncertainty, 95.45 % 0.03

e =v/0.01192 + 0.0012 + 0.00115472 + 0.0028872 + 0.0002887% = 0.0123 mV

(h) Effective degree of freedom

4
u
_ c —
Veff = ! ) o “ o =35
_A+Ln+ﬂ+M+M
4—1 v oo oo oo

(1) Coverage factor, k

Excel* : INV.T.BC(0.0455;3.5) — k=331
(i) Expanded uncertainty

U=3.31x0.0123=0.04 mV

We will round the uncertainty for two decimal digits (object voltmeter
resolution).

IL. Point 80.00 mV (Table 7.16)
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Table 7.17 Metrological Metrological characteristics (mV)
characteristics Object 120.00
Error —0.19
Type A uncertainty—Repeatability 0.0096
Standard uncertainty from certificate 0.001
Parasite uncertainty 0.0011547
Object resolution uncertainty 0.002887
Standard resolution 0.0002887
Combined uncertainty 0.010145
Effective degree of freedom 3.7
Coverage factor, k 3.31
Expanded uncertainty, 95.45 % 0.03
Table 7.18 Metrological Metrological characteristics (mV)
characteristics Object 160.00
Error —0.18
Type A uncertainty—Repeatability 0.0135
Standard uncertainty from certificate 0.001
Parasite uncertainty 0.0011547
Object resolution uncertainty 0.002887
Standard resolution 0.0002887
Combined uncertainty 0.0139
Effective degree of freedom 34
Coverage factor, k 3.31
Expanded uncertainty, 95.45 % 0.05

M. Point 120.00 mV (Table 7.17)

IV. Point 160.00 m V (Table 7.18)

V. Point 200.00 mV (Table 7.19)

Relative Error: Voltmeters are also classified by their relative error so that, so we
can calculate their accuracy class (Tables 7.20 and 7.21).
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Table 7.19 Metrological Metrological characteristics (mV)

characteristics Object 200.00
Error —0.26
Type A uncertainty—Repeatability 0.0138
Standard uncertainty from certificate 0.001
Parasite uncertainty 0.0011547
Object resolution uncertainty 0.002887
Standard resolution 0.0002887
Combined uncertainty 0.0142
Effective degree of freedom 34
Coverage factor, k 3.31
Expanded uncertainty, 95.45 % 0.05

Table 7.20 Relative error Point (mV) Error (mV) Error (%)
40.00 —0.16 0.08
80.00 —0.16 0.08
120.00 —0.19 0.10
160.00 —0.18 0.09
200.00 —0.26 0.13

Table 7.21 Result of Object Error Uncertajnty

calibration mv mv mvV k o
40.00 —0.16 0.04 3.31 35
80.00 —0.16 0.03 3.31 4
120.00 -0.19 0.03 3.31 3.7
160.00 —0.18 0.05 3.31 34
200.00 —0.26 0.05 3.31 34

7.7 Measurement Uncertainty in Fitting a Function

Most of the time, a phenomenon or a physical, chemical, or mechanical process is
represented by an experimental dataset. In these cases, it can be extremely interesting
to “represent” this dataset by a defined mathematical function. This approach
procedure is known as fitting or a function regression, and one of the techniques
used is the Least-Squares Method (LSM).

The literature widely discusses the fitting of experimental points by the LSM, and
we usually adopt software that makes these adjustments, such as Microsoft Excel©.
For this reason, we do not intend to address the demonstrations of the equations that
allow the determination of both the fitting function and its uncertainties.

We are interested in presenting the technique for calculating the measure uncer-
tainty of a function by the LSM. We apply this method whenever we want to
describe experimental data behavior—for example, the results in a calibration
certificate—through a mathematical equation.
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Graph 7.1 The adjustment of experimental points

This method consists of adjusting the dataset to a function that minimizes the
experimental variance of the set, that is, we must reduce the difference:

f(xi) =y

Where f{x;) is the value of the fitted function for point x; and y; is the experimental
value obtained for point XI, as shown in Graph 7.1.

As the method minimizes the difference but does not eliminate it, we will always
have to fit a function, whether it is the first (linear), of the second degree (parable), or
any other order, to obtain a measurement uncertainty related to both coefficients of
this function as those of its value on the y axis.

7.7.1 Measurement Uncertainty of Y

When we fit an experimental curve, for example, when we make a calibration curve
relating to the y-axis, the value of the standard, and the x-axis, the value of the
calibrated object, we generate a function f(x;) with measurement uncertainty associ-
ated with fitting, since no adjustment is perfect.

According to GUM 2008—Guide to the expression of uncertainty in measure-
ment (Annex H.3.2 Least-Squares Fitting), the variance s? is a measure of the overall
uncertainty, and the equation that determines the fitting uncertainty of the values
found on the axis y is as follows:

g =V =[S ) 72)
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Where f(x;) is the value of the fitting function for point x;; y; is the experimental
value obtained for point x;; p is the number of parameters to be fitted; n is the number
of experimental points; and (n — p) is the fitting degree of freedom.

7.7.2 Fitting Uncertainty

Considering the experimental points (x, y) obtained through calibration and using a
standard instrument, the total uncertainty of variable y will be the combination of the
uncertainty of the calibrated object (ugpjec) and the fitting uncertainty (uing)

through the equation:
Uy = \/ utz'ltting + ugbject (73)

Fitting uncertainty and the calibrated object uncertainty should always be com-
bined in a standardized form.

Solved Exercise 7.4: Calibration Graph—Fitting the Experimental Data.

It should be a digital scale with a measurement range of 0 to 50.00 kg and a
resolution of 0.01 kg. Table 7.22 shows the calibration result.

We know the uncertainties at each point of the scale. Suppose we now want to
obtain an equation that describes the behavior of the scale at any point within the
calibration interval 0 to 50 kg. Make the calibration curve of this scale and determine
the final uncertainty considering the fitting made by a first-degree function.

Solution Adjusting the scale calibration points by a line of type y(x) = ax + b, we
will have Graph 7.2:

Table 7.22 Calibration result Object Bias Uncertainty
Standard (kg) (kg) (kg) (kg) k
0.000 0.02 0.02 0.01 2.00
5.000 4.97 —0.03 0.01 2.04
10.000 10.02 0.02 0.01 2.04
15.000 14.96 —0.04 0.01 2.08
20.000 20.02 0.02 0.01 2.09
25.000 24.98 —0.02 0.01 2.09
30.000 30.05 0.05 0.02 2.09
35.000 35.01 0.01 0.02 2.05
40.000 39.99 —0.01 0.02 2.06
45.000 45.02 0.02 0.03 2.09
50.000 49.99 —0.01 0.03 2.09
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Calibration graph - solved exercise 7.4

y = 0.9998x + 0.0014
R =1 i

Standard value (kg)

0 10 20 30 a0 50 60

Object value (kg)

Graph 7.2 Scale calibration curve of Solved Exercise 7.4

Table 7.23 Solved Exercise Object (x;) kg Standard (y;) kg | fix;) kg [fix) — )’i]z
7:4: y and fix;) values 0.02 0.000 0.021396 | 0.000457789
497 5.000 4.970406 | 0.000875805
10.02 10.000 10.0194 | 0.000376205
14.96 15.000 14.95841 | 0.001729894
20.02 20.000 200174 | 0.000302621
24.98 25.000 249764 | 0.000556771
30.05 30.000 30.04539 | 0.002060252
35.01 35.000 35.0044 | 1.93424E-05
39.99 40.000 39.9834 | 0.000275494
45.02 45.000 450124 | 0.000153661
49.99 50.000 499814 | 0.000345886
T 0.007153719
Utting 0.028193221

The calibration curve in Graph 7.2 shows the fitting equation and the value of R*
(correlation coefficient). This coefficient demonstrates the quality of the adjustment
(the closer to one, the better the function adjustment) (Table 7.23).

(a) Fitting uncertainty.

Using Eq. 7.2:
= | /%: 0.028193221

n =11 and p = 2 (coefficients a and b of the fitted equation).
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(b) Combined uncertainty (Eq. 7.3).

0.03 s
= \Juy + 1k = \/209 +0.0281932212 = 0.031637 kg

The combined uncertainty was calculated by adding the certificate’s most signif-
icant uncertainty (0.03 kg), divided by the respective coverage factor (k = 2.09), to
the fitting uncertainty (0.028193221 kg).

(c) Expanded uncertainty

k=209 — Vo =29

u 0.031637*
YT Tl T, T 008108 oomasa’ 14 —k=221
P 29

obj
n—p Vobj

U=221 x0.031637 kg
U=0.07 kg

Note that uncertainty after fitting increased, but it gave us the convenience of not
having to correct the scale bias at each point or calibrate at more points (besides the
11 presented). Just use equation y = 0.9998 x + 0.0014 and adopt the uncertainty of
0.07 kg for all points.

Attention!

1. we can only perform interpolations, never extrapolations. That is, we can
only adopt the fitted equation for points within the calibration range
performed. In solved exercise 7.4, this represents values between 0 and
50 kg.

2. it is necessary to format the fitted equation with many decimal places for a
lower fitting uncertainty value. This way, the value of f{x;) will be closer to
the value of y;.

Solved Exercise 7.5: Temperature Transmitter Calibration.

A temperature transmitter with a nominal range of (0 to 100) °C/ (4.00 to 20.00)
mA is calibrated with a standard mercury thermometer with measurement uncer-
tainty equal to 0.05 °C (k = 2.00 and 95.45 %). In calibration were used a thermal
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Table 7.24 Temperature transmitter calibration
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Points Transmitter electric current (mA) Standard temperature (°C)
1 4.00 0.00
4.00 0.00
4.00 0.00
2 8.82 30.30
8.83 30.30
8.83 30.30
3 12.12 50.70
12.12 50.70
12.12 50.70
4 15.22 70.30
15.22 70.30
15.22 70.30
5 18.30 90.00
18.30 90.00
18.30 90.00
6 20.00 100.00
20.00 100.00
20.00 100.00

bath, a power supply, and a 3% digit multimeter with measurement uncertainty equal
to 0.8 % of the value read +0.01 mA, k = 2.00, and 95.45 %.

Table 7.9 shows the temperature transmitter calibration. Knowing that the ther-
mal bath used has a stability of +0.05 °C, determine the transmitter measurement
uncertainty (Table 7.24).

Solution:
I—Point 0 °C

(a) Standard and object mean

Xstandard = 0,00°C
Xtransmitter = 4.00 mA

(b) Type A uncertainty

UA —object = 0

UA —standard = 0

(c) Type B uncertainty (standard certificate).
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20

00 y=6.26721950x - 25.07797060
R?=0.999964
80
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electric current (mA)
Graph 7.3 Temperature transmitter calibration curve

Ustandard = —(2)8(5) =0.025°C

(d) Multimeter uncertainty (Type B).

0.008 x4.004-0.01  0.042
Umultimeter = 2.00 = 200

=0.021 mA

(e) Bath stability uncertainty

0.05 _ 0.0288675°C

Ubath = W

As we can see, we have uncertainties in °C and mA units from different
quantities: temperature and electric current, respectively. How can we transform
the uncertainties from mA to °C?

We want the transmitter to measure temperature, so we should have the uncer-
tainty in °C.

The solution to this problem is to discover a function related to °C and then find
the transmitter sensitivity coefficient. Graph 7.3, temperature versus electric current,
generated in Excel® software, will give us the desired function.

t=6.26721950 i — 25.07797060 (7.4)
t is the temperature (°C), and i is the transmitter electric current (mA).

Derivating Eq. (7.4), we have the sensitivity coefficient of the temperature
transmitter:
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Table 7.25 Fitting uncertainty
Mean electric current x; (mA) Mean temperature y; (°C) JiED) [fix) — vil?
4.00 0.00 —0.00909 8.26754E—05
8.83 30.30 30.24069 0.003518049
12.12 50.70 50.88073 0.032663239
15.22 70.30 70.30911 8.29956E—05
18.30 90.00 89.61215 0.150430531
20.00 100.00 100.2664 0.070979297
z 0.257756787
Uiy 0.253848768
ot °C
= =6.26721950
Oi mA
Important

Using the sensitivity coefficient, we can transform mA uncertainty values into
°C Measurement results in mA can only be converted into °C using the
equation ¢ = 6.26721950 1 — 25.07797060.

(f) Multimeter uncertainty (°C).

Uy = 0.021 mA

Uy = 0.021 mA x 6.26721950° C/mA

(g) Fitting uncertainty.

Umut = 0.131611609 ° C

We need to use Eq. 7.2. The fitting uncertainty will be the same for all calibrated

points (Table 7.25).

(h) Combined uncertainty.

ugir = 0.253848768 ° C

e =1/0.025% + 0.131611609% + 0.0288675> -+ 0.253848768>
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Table 7.26 Point 0.0 °C

7
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Metrological characteristics Results
Mean electric current (mA) 4.00

Mean temperature standard (°C) 0.00

Object temperature (°C) 0.00
Sensitivity coefficient (°C/mA) 6.26721950
Type A uncertainty—Object repeatability (°C) 0.00
Uncertainty from the standard certificate (°C) 0.025
Multimeter uncertainty (°C) 0.131611609
Bath stability uncertainty (°C) 0.0288675
Fitting uncertainty (°C) 0.253848768
Combined uncertainty (°C) 0.28847287
Effective degree of freedom, vt 6

Coverage factor, k 2.52
Expanded uncertainty, 95.45 % (°C) 0.7

u. =0.28847287°C

(i) Effective degree of freedom.

Lﬁ _ Uy + Unui n e
Veff oo o] n—p 00
0.28847287*  0.253848768*
Vet o 6—-2
0.28847287*
Veff = 7—————
(0.253848768 )
4
Veff =6

(j) Coverage factor k.
t-Student table, for 95.45% and ves = 6 k = 2.52

(k) Expanded uncertainty.

U=kxu,=2.52x0.28847287
U=0.726951632°C
U=0.7°C

(1) Instrumental bias.

We are using Eq. 7.4, the instrumental bias will be the difference between the

transmitter and standard values (Table 7.26).
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Table 7.27 Point 30.0 °C
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Metrological characteristics Results
Mean electric current (mA) 8.83

Mean temperature standard (°C) 30.30

Object temperature (°C) 30.2
Sensitivity coefficient (°C/mA) 6.26721950
Type A uncertainty—Object repeatability (°C) 0.208886425
Uncertainty from the standard certificate (°C) 0.025
Multimeter uncertainty (°C) 0.252612816
Bath stability uncertainty (°C) 0.0288675
Fitting uncertainty (°C) 0.253848768
Combined uncertainty (°C) 0.416346373
Effective degree of freedom, v 15

Coverage factor, k 2.18
Expanded uncertainty, 95.45 % (°C) 0.9
Table 7.28 Point 50.0 °C

Metrological characteristics Results
Mean electric current (mA) 12.12

Mean temperature standard (°C) 50.70

Object temperature (°C) 50.9
Sensitivity coefficient (°C/mA) 6.26721950
Type A uncertainty—Object repeatability (°C) 0.00
Uncertainty from the standard certificate (°C) 0.025
Multimeter uncertainty (°C) 0.335170898
Bath stability uncertainty (°C) 0.0288675
Fitting uncertainty (°C) 0.253848768
Combined uncertainty (°C) 0.422181313
Effective degree of freedom, v 30

Coverage factor, k 2.09
Expanded uncertainty, 95.45 % (°C) 0.9

B =Xobj — Xsua

B=(6.26721950-4.00 — 25.07797060) — 0.00

B= —0.00909 —0.00
B=0.0°C

II. Point 30.0 °C (Table 7.27)

II1. Point 50.0 °C (Table 7.28)



224

Table 7.29 Point 70.0 °C

7 Industrial Calibration

Metrological characteristics Results
Mean electric current (mA) 15.22
Mean temperature standard (°C) 70.30
Object temperature (°C) 70.3
Sensitivity coefficient (°C/mA) 6.26721950
Type A uncertainty—Object repeatability (°C) 0.00
Uncertainty from the standard certificate (°C) 0.025
Multimeter uncertainty (°C) 0.41288442
Bath stability uncertainty (°C) 0.0288675
Fitting uncertainty (°C) 0.253848768
Combined uncertainty (°C) 0.486180084
Effective degree of freedom, vt 53
Coverage factor, k 2.05
Expanded uncertainty, 95.45 % (°C) 1.0

Table 7.30 Point 90.0 °C
Metrological characteristics Results
Mean electric current (mA) 18.30
Mean temperature standard (°C) 90.00
Object temperature (°C) 89.6
Sensitivity coefficient (°C/mA) 6.26721950
Type A uncertainty—Object repeatability (°C) 0.00
Uncertainty from the standard certificate (°C) 0.025
Multimeter uncertainty (°C) 0.490096564
Bath stability uncertainty (°C) 0.0288675
Fitting uncertainty (°C) 0.253848768
Combined uncertainty (°C) 0.553255973
Effective degree of freedom, v 90
Coverage factor, k 2.03
Expanded uncertainty, 95.45 % (°C) 1.1

IV. Point 70.0 °C (Table 7.29)
V. Point 90.0 °C (Table 7.30)

VI. Point 100.0 °C (Tables 7.31 and 7.32)

7.8 Proposed Exercises

7.8.1 The calibration of a temperature sensor (PT-100 to 3 wires) against a temper-
ature standard presented the values contained in Table 7.33
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Table 7.31 Point 100.0 °C
Metrological characteristics Results
Mean electric current (mA) 20.00
Mean temperature standard (°C) 100.00
Object temperature (°C) 100.3
Sensitivity coefficient (°C/mA) 6.26721950
Type A uncertainty—Object repeatability (°C) 0.00
Uncertainty from the standard certificate (°C) 0.025
Multimeter uncertainty (°C) 0.532713657
Bath stability uncertainty (°C) 0.0288675
Fitting uncertainty (°C) 0.253848768
Combined uncertainty (°C) 0.591338625
Effective degree of freedom, v 118
Coverage factor, k 2.02
Expanded uncertainty, 95.45 % (°C) 1.2
Table 7.32 Temperature transmitter calibration
Object
Mean electric Mean temperature temperature (° | Bias | Uncertainty
current (mA) standard (°C) C) (°C) (°O) k Deff
4.00 0.00 0.0 0.0 |0.7 252 |6
8.83 30.30 30.2 —-0.1 |09 2.18 |15
12.12 50.70 50.9 -0.2 |09 2.09 |30
15.22 70.30 70.3 0.0 [1.0 2.05 |53
18.30 90.00 89.6 —-04 | 1.1 2.03 |90
20.00 100.00 100.3 03 |12 2.02 | 118
Table 7. .3} T.emperature Temperature
sensor calibration Standard (°C) Resistance R() Q
0.00 99.99
25.00 109.74
50.00 119.40
75.00 128.99
100.00 138.50
125.00 147.95
150.00 157.32
175.00 166.63
200.00 175.86

Considering the multimeter uncertainty is 0.02 Q (k = 2.00 and 95.45 %), the
stability of the calibration bath is +0.02 °C, the repeatability uncertainty (Type A
uncertainty) is equal to zero, and the standard thermometer uncertainty is 0.02 °C

(k = 2.00 and 95.45 %), determine:
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Table 7.34 Scale calibration

Standard mass (kg) Scale lectures (kg)
0.00 0.2;0.3;0.3
10.00 10.2; 10.4; 10.4
15.00 14.9; 14.9; 14.7
20.00 20.2; 20.0; 20.3
Table 7.35 GLT calibration  “Measurements Standard (°C) Object (°C)
1 10.1 10.5
10.1 10.5
10.1 10.0
2 20.0 19.5
20.0 19.5
20.0 19.5
3 50.2 50.0
50.2 50.0
50.2 50.0

(a) The fitting equation, knowing that a platinum resistance thermometer behaves
second to eq. R(f) = R(0) [1 + At + B ], where R(0) is the resistance of the
Pt-100 to 0 °C, ¢ is the temperature, R(?) is the electrical resistance at the desired
temperature, and A and B its coefficients.

(b) The fitting uncertainty.

(c) The Pt-100 expanded uncertainty.

7.8.2 A digital scale with a resolution of 0.1 kg was calibrated against a standard
mass set. The calibration result is in Table 7.34 (three measurements were
performed at each point).

Considering the standard masses uncertainty is 0.02 kg (for 9545 % and
k = 2.09), answer:

(a) What is the Type A uncertainty for each scale calibration point?

(b) What is the expanded uncertainty for each scale calibration point, considering
reading resolution, repeatability of measurements, and the standard mass as the
uncertainty sources?

(c) Build the graph “standard mass value X scale reading.” Find the fitting equation
y = ax + b and determine the fitting uncertainty.

(d) Build a table with expanded uncertainty values and bias for points of 0 to 20 kg
in intervals of 1 kg.

7.8.3 A glass liquid thermometer (GLT) has an uncertainty of 0.2 °C. What is the
highest value of standard uncertainty so that its influence on final uncertainty is
not greater than 2.5 %?

7.8.4 A GLT with a resolution of 0.5 °C is calibrated against a standard with a
resolution of 0.1 °C (Table 7.35).
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Taple 7.36 Pressure gauge Object | Standard (bar)

calibration bar Charge 1 | Discharge | | Charge 2 | Discharge 2
6.0 6.4 6.5 6.4 6.5
10.0 10.5 104 10.5 104
24.0 24.3 24.2 243 242
30.0 30.3 304 30.3 304
40.0 40.5 40.4 40.5 40.4

Taple 7.37 Voltmeter Standard (mV)

calibration Object mV) | VI V2 V3 7z
40.00 40.110 40.150 40.160 40.120
80.00 80.120 80.160 80.140 80.130
120.00 120.150 120.170 120.190 120.190
160.00 160.230 160.180 160.170 160.180
200.00 200.210 200.230 200.260 200.270

The calibration bath stability is +0.08 °C. The standard thermometer certificate is
in Solved Exercise 7.1 (Fig. 7.2).
Determine:

(a) The Type A uncertainty.

(b) The bath stability uncertainty.

(c) The object resolution uncertainty.

(d) The bias at each point.

(e) The linear calibration curve of the object thermometer and the equation that
relates the standard values (y) and the object (x) thermometer values.

(f) The uncertainty of the linear fitting of this thermometer.

(g) The thermometer uncertainty considering the fitting.

7.8.5 A Bourdon-type pressure gauge (object), with measurement range 0 to 40 bar
and 0.5 bar resolution, was calibrated against a standard gauge that has a
measurement uncertainty of 0.1 bar (k = 2.00% and 95.45 %) and resolution of
0.1 bar. Table 7.36 presents the result of the object gauge calibration.

Determine:

(a) The object gauge hysteresis at each point.

(b) The gauge relative error at each point.

(c) The gauge uncertainty at each point.

(d) The linear calibration curve of the object gauge and the equation that relates the
standard values (y) and the values of the object (x) pressure gauge.

(e) The uncertainty of the linear fitting of this gauge.

(f) The uncertainty of the gauge considering the fitting.

7.8.6 A digital voltmeter, with a resolution of 0.01 mV, was calibrated at an interval
of 0 to 200 mV against a standard voltmeter. Table 7.37 presents the result of the
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object voltmeter calibration. Consider the parasite voltage uncertainty equal
to 2uV/A3.

See the standard voltmeter certificate in Solved Exercise 7.3 (Fig. 7.4).
Determine:

(a) The object error at each point.

(b) The voltmeter relative error at each point.

(c) The voltmeter uncertainty at each point.

(d) The linear calibration curve of the voltmeter and the equation that relates the
standard values (y) and the values of the object (x).

(e) The uncertainty of the linear fitting of this voltmeter.

(f) The uncertainty of the voltmeter considering the fitting.
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Measurement Uncertainty in Conformity g
Assessment

8.1 Statement of Conformity and Decision Rules

Statements of conformity and decision rules are important issues to discuss, espe-
cially after the last edition of ISO/IEC 17025: 2017, which made the requirements
more rigorous for these issues.

Based on document ILAC-G8:09/2019—Guidelines on Decision Rules and
Statements of Conformity, we can establish the following definitions:

Statement of conformity: is an expression that describes the state of conformity or
non-conformity with a specification, standard, or requirement.

Decision rule: a rule that describes how measurement uncertainty will be accounted
for when stating conformity with a specified requirement. (ISO/IEC 17025:2017
clause 3.7)

As we can see, we need to adopt a decision rule to declare a product, process, or
measurement standard “conforming.”

The ISO/IEC 17025 standard was first published in 1999. Since then, statements
of conformity based on specifications or standards have become increasingly
required, following the evolution of documentation on the concept of rule decisions
used for such statements.

The current standard cites various requirements for the statement of conformity;
however, no “unique” rule can address all conformity statements throughout the
scope of testing or calibration.

Additionally, professionals (auditors and audited) have doubts about understand-
ing and writing. How do we obey, that is, what laboratories need to apply to meet the
customer’s requirements and the ISO/IEC 17025 standard?
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8.2 Conformity Assessment

Conformity assessment' is performed in tests, inspections, and calibrations to ensure
the compliance of products, materials, services, and systems regarding requirements
defined by standards, regulations, and legal frameworks, being adopted to establish
confidence for consumers and safety and quality of life.

Evaluating conformity is essential in the global economy, because it implies
accepting or rejecting items that impact risk analysis, business decisions, financial
costs, and sometimes reputation costs.

The result of a measurement can be used to decide whether a variable of interest
complies with a specific requirement, and this variable may be, for example:

(a) The value of a standard 200 g mass of class E2.

According to the OIML R 111-1 Edition 2004 recommendation, a standard mass
of 200 g of class E2 should have a maximum permissible error of 0.3 mg. This is to
say that the mass in question must have a value between [199.9997 to 200.0003] g.

(b) The indication error of a digital voltmeter.

The value indicated in the standard 999 V.
The value indicated in the voltmeter 1000 V.
Error =1 V.

(c) The pH value of a solution.
Example: pH = 7.474.

These variables of interest have values usually within tolerance limits, called
tolerance intervals. If the variable’s actual value is within the tolerance range, it is
considered “conforming”; otherwise, it is considered “non-conforming.”

In practical situations, to perform conformity assessment (e.g., conformity with
geometric tolerances), are necessary objective criteria called “decision rules” (which
consider a probability of occurrence), which define a “conformity zone” and an
“acceptance zone” (which are the results plus measurement uncertainty).

A traditional approach to a decision rule involves comparing a single limit
(or limit interval) with the result of a single measurement.

Currently, the probabilistic approach to measurement, which introduces uncer-
tainty as a parameter that expresses measurement variability, significantly affects the
decision-making process. See Fig. 8.1 for example.

Figure 8.1 presents four possible measurement results and their uncertainties
within a tolerance interval to which we must apply a decision rule. We can undoubt-
edly say that case (a) is “conforming” and case (d) is “non-conforming”’; however, in

! According to ISO/IEC 17000: 2004, conformity assessment is any activity performed to deter-
mine, directly or indirectly, whether a product, process, system, person, or body meets relevant
standards and complies with the specified requirements.
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Fig. 8.1 Representation of four different measurement results within a tolerance interval. (Source:
the authors)

cases (b) and (c), we have an indefinite situation that needs a formal criterion based
on an expected confidence interval, to be used to decide on your compliance.

A decision rule always carries a “risk,” and the declarants of conformity are
responsible for and directly control this risk, as they establish both the decision-
making criteria and the rules to be applied.

Together with you, we will develop the general concepts and procedures for
assessing conformity based on measurement results, recognizing the central role of
decision-making uncertainty in approving or disapproving the product or measure-
ment process.

Therefore, to better understand the content, it is essential to know some terms and
definitions widely used in the area, described in the JCGM 106:2012—Evaluation of
measurement data—The role of measurement uncertainty in conformity assessment.

(a) Tolerance Limit (TL) (Specification Limit): specified upper or lower bound of
permissible values of a property.

Example: The temperature of a laboratory should be maintained between
(20 £ 2) °C. The lower TL is 18 °C and the upper TL is 22 °C

(b) Tolerance Interval: interval of permissible values of a property.

NOTE 1 Unless otherwise stated in a specification, the tolerance limits belong to the
tolerance interval.

NOTE 2 The term “tolerance interval” as used in conformity assessment has a
different meaning from the same term as it is used in statistics.

NOTE 3 A tolerance interval is called a “specification zone” in ASME B89.7.3.1:
2001.

Example: The temperature of a laboratory should be kept within a tolerance
interval (20 + 2) °C.

(c) Tolerance: specified tolerance difference between upper and lower tolerance
limits.

Example: The temperature of a laboratory should be maintained between 20 + 2 °
C. The tolerance is 4 °C (18 °C — 22 °C).
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Fig. 8.2 Measurement decision risk. (Source: ILAC-G8:09/2019)

8.3 Uncertainty of Measurement and Risk of Decision

When performing a measurement, there are two situations when stating conformity:
inside or outside tolerance regarding the manufacturer’s specifications, approved or
disapproved in a specific requirement.

In real life, as much as the instrument is used, however accurate and precise, we
know that all measured value has an associated measurement uncertainty (U).

Figure 8.2 shows two measurements of the same measurand, but with different
measurement uncertainties (the central point is the measurement value, and the
horizontal bar shows the measurement uncertainty).

Note that the measurement result (measurement value + measurement uncer-
tainty) in case A is entirely within the tolerance limit. In case B, which has
significantly greater measurement uncertainty, the risk of accepting a false result
exists. What is the risk level of a false result?

Further, we will discuss the types of errors, risks, and possible decision rules in
detail, but now we will anticipate some considerations.

A binary decision rule exists when the result is limited to two options (approved/
disapproved, right/wrong, passes/does not pass), and a non-binary decision rule
exists when, of course, we have several alternatives to express the result (approved,
disapproved, conditional approval, conditional failure).

Analyzing Fig. 8.1, where measurements (a) and (b) are considered approved, and
the values (c) and (d) failed in a binary statement with a simple acceptance rule,
statements of conformity may be reported as:

* Pass (a) and (b): The measured value (central point) is within the specification
limits.
* Fail (c) and (d): The measured value is outside the specification limits.

In this case, the expanded uncertainty of measurement U was ignored, and the
decision was made only based on the measurement value.

Note that even cases (a) and (b), considered approved, have a percentage risk of
providing values outside tolerance limits. This percentage is much lower in case
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(a) than in case (b), but it exists. Remember that measurement uncertainty is
calculated for a probability of 95.45 % and that we have a 4.55 % probability that
the declared value is outside the measurement interval.

Thus, it is necessary to study the decision errors assumed when accepting or
rejecting a measurement result against specification limits (tolerance intervals).
Next, we will analyze these mistakes.

8.4 False Positive and False Negative

When performing a conformity assessment, there are probabilities related to two
types of incorrect decisions:

(a) Accept an incorrect result—false positive.
(b) Reject a correct result—false negative.

Figure 8.3 has four measurement results with their respective uncertainties.

Accepting or rejecting an item when the measured value of your property is close
to the tolerance limit may result in an incorrect decision and undesirable
consequences.

Analyzing situation (b) in Fig. 8.3, we see that the measured value is below the
tolerance limit, but the true value is above, configuring a false positive situation.
That is, a situation where we believe the product is within the specification, but it is
not. The situation (c) is opposite. We have the value measured above the tolerance
limit but below the true value. In this case, we have a false negative situation. That is,
we believe that the measurement does not meet the specifications but meets.

A Measured value

@® True value

Valid acceptance (a) ——A—0—
(b) ———A—@1 False acceptance
() @ F——F&——— False rejection

(d) —@—~A——— Valid rejection

T.=A4

Fig. 8.3 Ty is the upper tolerance limit, and Ay is the upper acceptance limit. There were four
measurement results, with their respective uncertainties at 95%. (Source: JCGM 106:2012)
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We have consumer risk in the case of a false positive (type II error or p error). In
the case of a false negative, we already have producer/supplier risk (type I error or a
error).

For measurements, the probability of not accepting an item as shown in Fig. 8.3,
(b) or rejecting an item as shown in Fig. 8.3, (c) can reach 50 %. This would happen,
for example, if the value measurement of a property were very close to the tolerance
limit. In this case, about 50 % of the probability of the measurement result would be
on both sides of the tolerance limit, so whether the item was accepted or rejected,
there would be a 50 % chance of an incorrect decision.

Any of these odds can be reduced, but at the cost of increasing the other, choosing
acceptance limits, which removes the result from tolerance limits.

This is a compliance decision strategy called Guard Band.

8.5 Decision Rules and Guard Band

When measurement is very close to tolerance limits or when uncertainty is signif-
icant, an acceptance criterion only considering the upper and lower tolerance limits
(simple acceptance) can lead to a high risk of an incorrect decision. Often, more
confidence is necessary in accepting or rejecting an analyzed item. For these
situations, we can use a guard band.

The guard band is a protection created to remove (reject) values near tolerance
limits. Acceptance and rejection zones can be determined, as shown in Fig. 8.4.

(a) High confidence in correct rejection.

Only measurements that exceed the guard band placed after the tolerance limit
will be rejected in this case.

(b) High confidence in correct acceptance.

Only measurements inferior to the guard band placed before the tolerance limit
will be accepted in this case.

The region between the upper tolerance limit and the higher acceptance limit is
called the guard band, reducing the risk of an incorrect decision.

The use of guard bands provides a straightforward way to define decision rules;
choosing the size of the guard band defines an acceptance zone that can be used for
decision-making. The guard band is generally defined as the expanded uncertainty of
measurement (U). It can also be described as zero. This is called simple acceptance
or “shared risk.”

Figure 8.5 shows the acceptance and rejection zones. The guard band has been
chosen so that, for a sample that is in accordance, there is a high probability that the
measurement is within the specification limits; this is high confidence in correct
acceptance.

Figure 8.5 shows the relative positions of specification limits and acceptance and
rejection zones for high acceptance confidence.
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a) Upper limit

w: the "guard band

Acceptance zone Rejection zone

b)

Acceptance zone Rejection zone

Fig. 8.4 The relative positions of the acceptance and rejection zones for (a) high confidence in
correct rejection and (b) high confidence in correct acceptance. The interval w is called the guard
band. The upper end of the acceptance zone is the acceptance limit. (Source: EURACHEM/CITAC
Guide—Use of uncertainty information in compliance assessment—Second Edition 2021)

Fig. 8.5 Relative positions Lower Limit Upper Limit
of the specification limits
and the acceptance and
rejection zones, allowing for Specification zone
high confidence in correct
acceptance. (Source:
EURACHEM/CITAC
Guide—Use of Uncertainty
Information in Compliance
Assessment—Second
Edition 2021)

* b B

Rejection zone  Acceptance zone Rejection zone
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The decision to accept an item as in accordance or reject it as not as, according to
the specification, is based on a measured value of a property of the item about a
declared decision rule that specifies the role of measurement uncertainty in the
formulation of acceptance criteria. An interval of measured property values that
results in acceptance of the item is called the acceptance zone (see Fig. 8.5), defined
by one or two acceptance limits (see Fig. 8.4).

The limits of acceptance and the corresponding decision rules are chosen to
manage the undesirable consequences of incorrect decisions. Several widely used
decision rules are simple to implement. They can be applied when knowledge of a
property of interest is summarized in terms of a better estimate and corresponding
coverage interval. Two of these decision rules are described below.

8.5.1 Decision Ruler Based on Simple Acceptance

An important and widely used decision rule is simple acceptance or shared risk. In
this rule, the producer and user (consumer) agree, implicitly or explicitly, to accept
as (and reject otherwise) an item whose property has a value measured within the
tolerance range. With the alternative name of “shared risk,” the producer and the user
share the consequences of incorrect decisions.

In practice, to maintain the chances of incorrect decisions at acceptable levels for
both the producer and the user, there is usually a requirement that measurement
uncertainty is considered sufficient for the intended purpose.

One approach to such consideration is to require, given an estimated measured
quantity, which expanded uncertainty U for a probability of scope, for example, of
95.45 %, must satisfy:

U < Unax

Where Uy, is a mutually agreed expanded uncertainty, this approach is
explained by the following situation.

Legal Metrology’s decision rule based on simple acceptance has been used to
verify instrument measurement.

Consider an instrument that must have an indication error in the interval [—
E ax; + Enax]- The instrument is accepted under the specified requirement, if it meets
the following criteria:

(a) Analyzing the measuring instrument calibration certificate, its measurement
error E will be accepted if it satisfies the condition: E < E,, ..
(b) Expanded uncertainty will be accepted if it is less than 1/3 of the maximum error.

UL Upax= max/3
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8.5.2 Decision Rules Based on Guard Bands

The difference between a tolerance limit (7¢;) and a corresponding acceptance limit
(Ayp) defines the width of a guard band (w).

W:Tu—Au. (81)

When we consider that a decision rule is protected, that is, it has a small
probability of generating false positives or false negatives, we adopt w > O.
(Fig. 8.6).

8.6 Unilateral Tolerance Interval with the Normal Curve

The probability of a measurement (product, component, etc.) being in compliance
depends on the knowledge of the measuring X and its respective probability density
function (PDF) P(X). In most cases, it is reasonable to characterize the knowledge X
by a normal distribution, and thus, we can calculate its probability.

If the production distribution is normal and a normal distribution also character-
izes the measurement system, then the distribution function P(X) will also be normal.

More generally, if the probability function is characterized by a normal distribu-
tion and the previous information is insufficient, then the posterior PDF (post-
measured) will be approximately normal. In this case, P(X) may be adequately
approached by a normal distribution with the mean X and the standard deviation
by standard uncertainty u(x), calculated according to ISO Gum criteria.

Assuming, then, that the PDF P(X) for the measurement X is (i.e., well approx-
imated by) a normal distribution specified by a mean X and a standard uncertainty
u(x), we will have:

w>0 !

Acceptance interval Guard band

Au Tu

Fig. 8.6 Guard band-based decision rule. An upper Ay acceptance limit within an upper Ty
tolerance limit defines an acceptance range that reduces the probability of false acceptance of a
non-conforming item (consumer risk). By convention, the length parameter w associated with a
guard band is considered positive: w = Ty — Ay > 0. (Source: JGCM 106:2012)
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Fig. 8.7 Standard normal
accumulated probability

=)’ :q)(x;i; u2) (8.2)

X)= e
p(x) v

The probability of X being in the interval [a, b], with a normal PDF P(X), will be:

P(aSXSb)zqo(b_x)—(p(a_)_C) (8.3)

u u

The probability P(X) can be found in a standard normal accumulated table or
through MS EXCELO© software, function DIST.NORM.N (x, mean, standard devi-
ation, cumulative).

Figure 8.7 and Table 8.1 show the standard normal accumulated probability of
z from 0.00 to 3.99.

Next, we will apply Eq. (8.3) to estimate the probability of obtaining a value
accepted as valid for a given specification from a measurement result.

8.6.1 Examples of Probability Estimation in Simple
Acceptance

(a) Single upper tolerance limit—77;.

As we saw at the beginning of this chapter, a measurement process’s tolerance is the
maximum variation admitted by the process variables. This tolerance range is the
limit within which the parameters of interest must be located.

In some situations, we do not work with a tolerance range but with a single
tolerance value. Given a single upper tolerance limit (7y) and an estimated y
measurement with standard measurement uncertainty u(y), a decision rule must
define a probability of compliance (Pc) assuming a false negative (products in
compliance are incorrectly rejected).

The expression to be tested is:

Pe=P(y<Ty)= <p<$) (84)
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Example 8.1: Upper Tolerance Limit—7; Consider a measurement estimate
y = 2.7 mm with an uncertainty u (y) = 0.4 mm (for k = 2.00 and 95.45%
metrological reliability). A single upper limit of tolerance 7y = 3.0 mm and a
probability for 95% compliance was established, thus assuming a false negative
(supplier risk—type I) of 5%.

Based on this experimental result (2.7 mm), on the defined tolerance limit
(3.0 mm), on standardized uncertainty ¥ = 0.2 mm (U/K), and assuming a Gaussian
PDF, the decision rule will be to accept that the hypothesis of the measured value
y < 3.0 mm is equal to or greater than 95% (0.95). In statistical language, we have:

Hy: P (y<3.0 mm)>0.95is true.

To estimate the probability related to the given example, the probability of
compliance (Pc) needs to be calculated using the general expression for the Gaussian
probability density (PDF) function.

3.0-27

Pc:P(ySTU):q’(b) :‘P< 0.2

u ):¢(1,5) ~0.933 (93.3%) < 0.95

Therefore, hypothesis Hy is false, and the decision is non-conforming.

Conclusion If the measurement is 2.7 mm with standard uncertainty ¥ = 0.2 mm,
the probability that the accepted value is 93.3 %. As we want a probability greater
than or equal to 95 %, the result of 2.7 mm will be rejected.

Now, Let Us Look at Another Question!
Keeping the initial conditions, that is, tolerance limit defined at 3.0 mm, standardized
uncertainty ¥ = 0.2 mm, decision rule Hy: P (y < 3.0 mm) > 0.95, we ask:

What should be the highest value of y to have conformity?

We need to identify the value of Y that meets the equation:

P.=P(y<Ty) :(p(TU _y) :q)(3'8;y) >0.95

u

In Table 8.1, we see that for z = 1.65, we have p = 0.9505 > 0.95. Then:
z=1.65=320"2—y=2.67mm

Conclusion we will have a conforming when y < 2.67 mm.

Note that in this example, we need to use a measuring instrument with expanded
uncertainty equal to 0.4 mm, and the measurement error is corrected at the time of
reading. What should be the instrument’s resolution that will meet these
characteristics?

To detect the upper limit value of 2.67 mm, it must have a resolution of 0.01 mm.
This instrument can be a digital caliper with 0.01 mm resolution and measurement
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error added to measurement uncertainty of 0.4 mm, both are read in the caliper’s
calibration certificate.

In industrial processes, it is usual to add the measuring error of the instrument
with its uncertainty stated in the calibration certificate. This sum, error (or bias)
(in absolute value) more measurement uncertainty is a way for industries not having
to correct the measurement. On the other hand, it increases measurement uncertainty.

We must, whenever possible, correct measurement and eliminate the error of
measuring or instrumental bias. However, for various reasons, we find industrial
processes where measurement error (E) or instrumental bias (B) is added to uncer-
tainty, thus generating what is usually called maximum uncertainty (Uy,,y) and, in
some cases, maximum permissible error (MPE).

Upar=|E or B| + U

Analyze, now, this new provocation!

If we want to increase the cutting value from 2.67 mm to 2.99 mm, what
measurement uncertainty should we adopt for this measurement, maintaining the
probability of acceptance of 95%?

z=1.65=

w —u=0.006 mm

Note that in this case, we must have an expanded measurement uncertainty of
0.012 mm and use a micrometer with a resolution of 0.001 mm.

(b) Single lower tolerance limit—77,

Similarly, given a single lower tolerance limit (7;) and an estimated y measure-
ment with standard measurement uncertainty u(y), a decision rule should define a
probability of compliance (Pc) assuming a false positive (supplier error—type I
error).

Expression for test:

P(y>Tp) =q)(&) (8.5)

Example 8.2: Single Lower Tolerance Limit—7; Consider a measurement esti-
mate y = 0.012 g with an uncertainty U(y) = 0.002 g (for k = 2.00 and 95.45 %
metrological probability). A single lower tolerance limit 7; = 0.010 g was defined,
and a probability for conformity was 0.99 (99 %), thus assuming a risk of false
positive (supplier error) of 0.01 (1%).

With the experimental result (0.012 g), the tolerance limit (0.010 g), and assum-
ing a Gaussian PDF, the decision rule will be to accept that the hypothesis
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Hy: P (y > 0.010 g) > 0.99 is true.

To estimate the probability related to the given example, the probability of
compliance (Pc) needs to be calculated using the overall expression for
Gaussian PDF:

y— TL) _ (0.012 —0.010

p.— q,( g o ):¢(2.0)zo.977 (97.7%) < 0.99

Then, Hy is false, and the decision is non-conforming.

Conclusion If the measurement is 0.012 g with standard uncertainty # = 0.001 g,
the probability that the accepted value is 97.7 %. As we want a probability greater
than or equal to 99 %, the result of 0.012 g will be rejected.

If the conformity probability were redefined to 95 %, the decision rule would be
to accept hypothesis Hy: P (y > 0.010 g) > 0.95 as true.
Using the results obtained:

=Ty 0.012-0.010\ N
Pe=p(PE) =g (S o gor ) = #(2.0) <0977 (97.7%) > 0.95

Then, Hy is true, and the decision is confirmed.

Conclusion If the measurement is 0.012 g with standard uncertainty u = 0.001 g,
the probability that the accepted value is 97.7 %. As we want a probability greater
than or equal to 95 %, the result of 0.012 g will be accepted.

(c) General approach with unique tolerance limits

As we have seen earlier, for both the probability of compliance (Pc) for an upper
tolerance limit (7)) and for a lower tolerance limit (7)), we must define a decision
rule for a probability of compliance (Pc) for type I error (a error).

Type I error occurs when we reject a product in accordance, that is, we adopt a
safety margin. This is why we say that type I error is the wrong decision for the
supplier, as it rejects a conforming product.

Remembering:

—-T
7= 8l - L), lower limit (8.6)

And

T, —
7= % upper limit (8.7)

where
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Table 8.2 z values for Pc Pc z

values (probability) 0.80 084
0.90 1.28
0.95 1.65
0.99 2.33
0.999 3.09

y—is the value of the measured quantity and we want to analyze.

u—is the value of standardized uncertainty of measurement.

Pc—is the probability that the product, specification, or variable analyzed follows
the specification (Table 8.2).

Note that if z > 1.64, we will have the probability of 95 % or more of having an
approved specification.

Example 8.3 (Source: JGCM 106:2012)

The rupture V), voltage of a Zener diode is measured by producing a better estimate
v, = —5.47 V with standard uncertainty u = 0.05 V. The diode specification requires
V, £ —5.40 V, which is an upper limit of the voltage. What is the probability of this

diode conforming to the specification?

Using the Eq. (8.7): z= 240347

z=1.40

Pc = @ (1.40) = 0.9192. There is a 92% probability that the diode conforms to
the specification.

Example 8.4 (Source: JGCM 106:2012)
A metal container is tested destructively using pressurized water to measure its
resistance to rupture B. The measurement produces a better estimate
b = 509.7 kPa, with standard uncertainty associated # = 8.6 kPa. The container’s
specification requires B > 490 kPa, the lower limit of the rupture pressure.

Using the Eq. (8.6):

_(509.7—490)
2= e =229

Pc = & (229) = 0.989. There is a 98.9 % probability of the container
conforming.
(d) Bilateral tolerance interval with the normal curve

As seen earlier, measuring Y obeys a normal distribution. The estimate y is in the
interval of tolerance. Using Eqs. 8.6 and 8.7, we have:



8.6 Unilateral Tolerance Interval with the Normal Curve 245

R o

u

Knowing the upper and lower tolerance limits 7 and 7, of a measurement
process, how do we know if a measurement result has a certain probability of
being within the tolerance limits?

Equation 8.8 allows us to answer this question. Let us look at the following
example.

Example 8.5 (Source: JGCM 106:2012)
A SAE Grade 40 engine oil needs to have a kinematic viscosity ¥ to 100 °C not less
than 12.5 mm?s and not greater than 16.3 mm?/s. The kinematic viscosity of the
sample at 100 °C has a value of y = 13.6 mm?/s and a standard uncertainty of
u = 1.8 mm%/s. What is the probability that the engine oil conforms to the
specification?

Solution: Adopting Eq. 8.8, we have:

ri-o(t]) -o(53)

P.=®(1.5) - ®(—0.6)
P.=0.9332-0.2743
P.=0.9332 - 0.2743

P.=0.6589

The probability of the engine oil sample as specified is 65.89 %. We obtain the
probability of ¢ (1.5) by associating the value of z = 1.5 with its respective
probability value (see Table 8.1), which gives us a value of 0.9332. Already the
value ¢ (—0.6), we get the complement of ¢ (0.6), which is (1-0.7257 = 0.2743)
(Fig. 8.8).

Example 8.6

Consider a measurement estimate y = 23.5 kN with a standard uncertainty u-
(y) = 0.5 kN, a tolerance range of [22 kN, 25 kN]J, and a 95 % conformity
specification, thus assuming a type I error of 5 %.

With the experimental result and the interval of tolerance, assuming a Gaussian,
the decision rule will be accepted if hypothesis Hy: Pc (22 <Y < 25) > 0.95 is true.

To estimate probabilities related to the given example, the probability of compli-
ance (Pc) needs to be calculated using Eq. 8.8.
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Normal Distribution (mean 13.6 mm?/s and standard deviation 1.8 mm?/s)

0,2000 y Ty
& V.

g6 92 98 104 11 116 122 128 134 140 146 152 158 164 170 176 182 188 194

kinematic viscosity (mm?/s)

Fig. 8.8 Normal distribution refers to the kinematic viscosity measurement in example 8.5. Note
that the hatched area comprises a 65.89 % probability that the measurement (13.6 + 1.8) mm?/s
complies with the product specifications

Table 8.3 Probabilities cal-

culated at some points y of y (kN) ol (¥) @2 (%) Pel Pe2 Pe

Example 8.6 22.0 6.00 0.00 1.00 |0.50 |50%
22.5 5.00 —1.00 1.00 |0.16 |84%
22.8 4.40 —1.60 1.00 [0.05 |95%
23.0 4.00 —2.00 1.00 [0.02 |98%
23.5 3.00 —3.00 1.00 |0.00 100%
24.0 2.00 —4.00 098 |0.00 |98%
24.2 1.60 —4.40 095 |0.00 |95%
24.5 1.00 —5.00 084 |0.00 |84%
25.0 0.00 —6.00 050 [0.00 |50%

oo -a(1)
u u

Pc=<1><

25 —

o) o

0.5

22 -235
0.5

P.=®(3) — d(—3)
P.=0.9987 —0.0013
P.=0.9974=99.7%

As 99.7 % > 95 %, Hy is true, and the decision conforms.

Table 8.3 represents the probabilities found for some y values measured. The Pc
column is likely to see the measurement result within tolerance limits.

Analyzing the values obtained in Table 8.3, we find that if the acceptance
criterion adopted is Pc = 95 %, the values equal to or less than 22.8 kN and equal
to or higher than 24.2 kN would fail.
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The question is: Is it possible to determine minimum and maximum values within
the tolerance range, where all values found will comply with the criterion adopted?
To answer this question, the concept of a guard band was created.

8.6.2 Examples of Probability Estimate Using Guard Bands

Example 8.7

Suppose that in a line of rubber sandals production, we must control the mass of the
essential raw material: rubber. Consider that the specification of the rubber mass
required for a sandal is (8.0 = 0.5) g. The scale used to control rubber weighing has
an acceptance criterion (error + expanded uncertainty of the scale calibration certif-
icate) less than or equal to 0.1 g and a resolution of 0.01 g. Based on this information,
determine the lower and higher values where we have a probability of 95 %
acceptance (risk to the 5 % producer).

Consider:
. TU = 85 g
b TL = 75 g

« u=0.05gUR2=0.1/2)7

(a) Determining the upper acceptance limit to 95 %

- (47 59

For 95 %, consulting Table 8.1, we have z = 1.65, replacing Eq. 8.9.

85—y\ _
(0.05 >1‘65—>y8.42g

(b) Determining the lower acceptance limit to 95 %

_(y—TL

zL_( _ ) (8.10)
_(y—=15

1.65< o )
y=7.58¢

2Consider the coverage factor k = 2; 95.45 % of probability.
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culnedinsome posible @[ @105 |oa(y) [pt lp |pe

values of the mass m of 750 | 20.00 0.00 100 050 | 50%

Example 8.7 The Pc columnis  7.58 18.40 —1.60 1.00 0.05 95%

likely to find the measurement  7.60 18.00 —2.00 1.00 0.02 98%

result within tolerance limits 7.70 16.00 —4.00 1.00 0.00 100%
7.80 14.00 —6.00 1.00 0.00 100%
7.90 12.00 —8.00 1.00 0.00 100%
8.00 10.00 —10.00 1.00 0.00 100%
8.10 8.00 —12.00 1.00 0.00 100%
8.20 6.00 —14.00 1.00 0.00 100%
8.30 4.00 —16.00 1.00 0.00 100%
8.40 2.00 —18.00 0.98 0.00 98%
8.42 1.60 —18.40 0.95 0.00 95%
8.50 0.00 —20.00 0.50 0.00 50%

TU =85¢g

Ti=75¢

tolerance interval

80¢g

AL=758¢ acceptance interval Ay=3842¢

Fig. 8.9 Acceptance interval of Example 8.7 with guard band w = 0.1 g

Table 8.4 presents some possible mass (1) values of the rubber in question and its
respective probabilities to be between the tolerance limits.

The values above 7.58 g and below 8.42 g are, respectively, called the lower
acceptance limit (A;) and higher acceptance limit (Ay) for a probability of 95 %
(decision rule). Thus, we can establish:

A; =758 g; Ay = 8.42 g; Guard band (w) = 0.1 g (95 %)’

If we adopt the values 7.60 g and 8.40 g for acceptance limits, we could even
consider a 98% decision rule for values accepted within the tolerance range. How-
ever, this value is not usual, and we maintain the criterion of 95 % (Fig. 8.9).

3This guard band can be adopted as a criterion for accepting the scales used in the control of rubber
mass measuring used in the production of sandals. The error added to the uncertainty of the scale,
obtained in its calibration certificate, cannot be greater than 0.1 g.
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8.7 Risks Inherent in Decision-Making

In many cases, decision-making may have severe and harmful consequences and
may lead to legal, criminal, accusatory, and even health damage.

Next, we will examine how to manage the risks inherent in making decisions
based on safe and reliable measurements.

8.7.1 Protected Rejection—Categorical Decision

Protected rejection occurs when the measurement’s result will result in a categorical
decision, often with legal consequences, causing legal or high risk in decision-
making. Let us look at the following example.

Example 8.8 (Source: JGCM 106:2012)

In the application of road law, the road police use devices such as radars to measure
car velocity. A decision to issue a speed fine must be made with a high degree of
confidence that the speed limit has been exceeded.

Using a radar, speed measurements in the field can be performed with a relative
standard uncertainty of 2% within the interval of (50 to 150) km/h. In this interval,
the measured velocity v is characterized by a normal distribution with a standard
deviation of 0.02 v.

Under these conditions, one may ask: For a limit speed of 100 km/h (the
maximum speed at which the driver does not take a fine), what should be the
measured velocity by the radar to ensure, with a 99.9 % probability, that the driver
exceeded the limit speed of 100 km/h?

This mathematical problem is equivalent to calculating a probability of confor-
mity for a higher unilateral tolerance interval.

Note that z is given by Eq. (8.9) and that the probability of desired trust is 99.9 %,
z =3.09 (Table 8.1). Then we have:

(Ty —y)

(Ty —100)
2

Ty =106.16 km/h

3.08=

The interval [100 km/h < v < 107 km/h] is a guard band that ensures a probability
of at least 99.9 %. If the measured speed is over 107 km/h, the police will have
99.98 % confidence that the driver was above 100 km/h, and he will fine the violator.
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gfgg" ]ifl . TUR =5 without oy o1y Jea(=2) [Pt P2 |Pe
750 | 20.00 0.00 100|050 |50%
758 | 1840 ~1.60 100 005 | 95%
760 | 18.00 —2.00 100|002 | 98%
770 | 16.00 ~4.00 100 000 | 100%
780 | 14.00 ~6.00 100 |0.00 | 100%
790 | 12.00 ~8.00 100 000 |100%
800 | 10.00 ~10.00 100|000 |100%
810 | 8.00 ~12.00 100|000 | 100%
820 | 6.00 ~14.00 100 |0.00 | 100%
830 | 4.00 ~16.00 100 |0.00 | 100%
840 | 2.00 ~18.00 098 000 |98%
842 | 1.60 ~18.40 095 |0.00 |95%
850 | 0.00 220.00 050 000 |50%

8.7.2 Binary Decision Rule Applied to the Conformity
Assessment Without Guard Band

Remembering, a binary decision rule exists when the result is limited to two options
(approved or disapproved) and a non-binary decision rule when various terms can
express the result (approved, conditional approval, conditional disapproval,
disapproved).

We will start this theme by analyzing the situation in which we have a binary
decision without using the guard band. In a binary statement where the simple
acceptance rule is adopted (w = 0), we have the situations:

» Approved—the measured value is between the tolerance limits.
» Disapproved—the measured value is outside the tolerance limits.

Let us look at the following example.

Example 8.9
Analyzing the rubber mass specification of Example 8.7, we present the following
questions:

1. What should be the uncertainty of the scale that will measure the value of the
rubber used in the production of sandals?
2. Should this uncertainty be related to the tolerance of the process?

To answer these two questions, we must adopt a decision rule. Initially, we will
adopt a decision rule without a guard band; that is, we are sharing the risk with the
consumer of sandals. Knowing that the specification of the mass of rubber used in
the production is (8.0 + 0.5) g, we have T, = 7.5 g and Ty = 8.5 g. If we adopt an
expanded uncertainty of the scale according to Example 8.7, that is, U = 0.1 g (for
95.45 %), we will have (Table 8.5):
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gjgg" ]i;fl . TUR =2 without = oy o1y [e2(=2) [Pt P2 |Pe
750 |8.00 0.00 100|050 |50%
758 736 —0.64 100 026 | 74%
760 | 7.20 —0.80 100|021 | 79%
770 | 6.40 ~1.60 100 005 | 95%
780 | 5.60 240 100|001 | 99%
790 | 4.80 2320 100 000 | 100%
800 | 4.00 —4.00 100|000 |100%
810 |30 —4.80 100|000 | 100%
820 | 240 ~5.60 099 |0.00 |99%
830 | 1.60 ~6.40 095 000 |95%
840 | 0.80 ~7.20 079 000 |79%
842 | 0.64 ~736 074 000 | 74%
850 | 0.00 ~8.00 050 000 |50%

+ Standardized uncertainty u = 0.1/2 = 0.05 g.
» Relationship between tolerance and expanded measurement uncertainty (TUR—
Test Uncertainty Ratio)*

Note that if we accept the measurement of m = 8.50 g, we will have the shared
decision with the customer since 8.50 g gives a probability of acceptance of 50 %.
Even adopting a TUR equal to 5, as we do not have a guard band, we can have a low
acceptance probability in some values within the tolerance range.

Adopting a TUR equal to 5 implies a scale with Uy,,x or PME (U + E) equal to
0.1 g, for £ = 2.00 and 95.45 %,

What if we adopt a TUR equal to 2? This would allow a balance with
PME = 0.25 g. Let us look at the results (Table 8.6).

TL

TUR—F

T 0.5
V=1or= 2 70

With TUR equal to 2, we have the same mass value; for example, m = 8.42 g, a
probability of 74% acceptance, and with TUR equal to 5, this probability becomes
95%. If we want a probability of 95 %, this value for a TUR equal to 5 is equal to
m = 8.42 g, and for a TUR equal to 2, it is equal to or less than m = 8.30 g.

4TL = tolerance limit = Y% tolerance
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T, Ay Ty
guard
band

7,50 g 8,00g 830¢g 8,50 g

Fig. 8.10 TUR = 2, and point with 95% of acceptance (8.30 g)

guard
band
7,50 g 8,00 g 8422 gs0g
Fig. 8.11 TUR =5, and point with 95 % of acceptance (8.42 g)
guard
band
750 ¢ 8.00 g 850¢g
846 ¢g
754 ¢

Fig. 8.12 TUR = 10, and point with 95% of acceptance (8.46 g)

Conclusion When the larger TUR will be the acceptance range, more measured
values will be accepted in this interval.

Note Figs. 8.10 and 8.11, and notice that the acceptance range increased by
increasing TUR for the same probability of acceptance.

The price of a larger TUR is to invest in the measuring instrument, in this case, the
scale. For a TUR equal to 2, we have U = 0.25 g, and for a TUR equal to
5U=0.1g¢g.

TUR values range from 3 to 10, since TUR equal to 1 is to have an acceptance
probability only for the central value, in our example, 8.00 g. TUR equal to 2 leaves a
minimal acceptance range (Fig. 8.12) (Table 8.7).
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fo aceepance it a5 9 8| @109 oo [retre2 e

equal to 7.54 g and 8.46 g 7.50 40.00 0.00 1.00 0.50 50%
7.54 38.40 —1.60 1.00 0.05 95%
7.60 36.00 —4.00 1.00 0.00 100%
7.70 32.00 —8.00 1.00 0.00 100%
7.80 28.00 —12.00 1.00 0.00 100%
7.90 24.00 —16.00 1.00 0.00 100%
8.00 20.00 —20.00 1.00 0.00 100%
8.10 16.00 —24.00 1.00 0.00 100%
8.20 12.00 —28.00 1.00 0.00 100%
8.30 8.00 —32.00 1.00 0.00 100%
8.40 4.00 —36.00 1.00 0.00 100%
8.46 1.60 —38.40 0.95 0.00 95%
8.50 0.00 —40.00 0.50 0.00 50%

Note how the guard band reduces and consequently increases the acceptance
interval when the TUR increases to 10. This increases the chances of product
acceptance but dramatically reduces the acceptance criterion and, consequently,
the uncertainty of the measuring instrument.

8.8 Binary Decision Rule Applied to the Conformity
Assessment with a Guard Band

When we adopt a binary decision rule in the conformity assessment, the measure-
ment result is accepted if the measured value is within the acceptance interval. A
value measured outside the acceptance interval leads to the item’s rejection.

Using guard bands provides a way to limit the probability of making a decision
incorrectly based on measurement information summarized by a probability interval.

The probabilities evaluated depend on two factors: (i) the measurement system
and (ii) the production process.

If the measurement system were perfectly accurate, all decision-making would be
correct, and the risks would be null. An increase in measurement uncertainty means
an increase in the probability of an incorrect decision, and the probability is higher
when the measured values are close to the tolerance limits.

Risks also depend on the nature of the production process. If the process rarely
produces an item whose properties of interest are close to tolerance limits,” there is
less opportunity to make incorrect decisions. On the other hand, if a process

5
Process under control.
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Upper Specification
Upper Acceptancelimit .. . I

et
— s

Nominal----- i e
U I !
Lower Acceptance Limit...._. ? e PR I PP PR I -
Lower Specification 1 I va
Statement of Conformance Pass Pass Fail Fail

U = 95% expanded measurement uncertainty

Fig. 8.13 Graphical representation of a binary statement with a guard band. (Source: ILAC G8:09/
2019)

produces items with properties that are probably close to tolerance® limits, the
uncertainties associated with measurements are placed in the game.

An out-of-control process, with a significant dispersion of measured values,
produces values near tolerance limits, significantly increasing the probability of
wrong decision-making.

The guard band’s boundaries for a confidence level of (1 — a) can be obtained,
considering a symmetrical error of a/2 on each PDF tail.

Statements of conformity are reported as:

» Pass—acceptance is based on the acceptance range; the measurement result is
between the acceptance limits.

* Fail—rejection based on the guard band if the measurement result exceeds
acceptance limits (Fig. 8.13).

The adoption of a guard band gives protection to risk, according to the size of the
band. We adopted the relationship w = r-U, where r is the multiplicative factor to the
guard band. Let us look at some typical guard bands and their respective r.

8.8.1 Guard Band withr = 1 (w = U)—ILAC G8:2009 Rule
Decision

In this case, the guard band has the same value as expanded uncertainty. Applying
the guard band in the example of sandal production, for a TUR equal to five, we have
(Table 8.8):

SProcess out of control.



8.8 Binary Decision Rule Applied to the Conformity Assessment with a Guard Band 255

:;E;ewsf UTUR =dguard oy Jer(e) o2 [Pt [P Pe
750 | 20.00 0.00 100 1050 | 50.00%
754 | 19.20 —0.80 100 1021 | 7881%
7.60 | 18.00 —2.00 100 002 | 97.72%
7.70 | 16.00 —4.00 100 |0.00 | 100.00%
7.80 | 14.00 —6.00 100 |0.00 | 100.00%
7.90 | 12.00 —8.00 100 |0.00 | 100.00%
800 | 10.00 ~10.00 100 |0.00 | 100.00%
810 | 8.00 ~12.00 100 |0.00 | 100.00%
820 | 6.00 —14.00 100 |0.00 | 100.00%
830 | 4.00 ~16.00 100 |0.00 | 100.00%
840 | 2.00 ~18.00 098 |0.00 | 97.72%
846 | 0.80 ~19.20 0.79 1000 | 78.81%
850 | 0.00 ~20.00 050 |0.00 | 50.00%

Adopting r = 1, we will always have the acceptance limits with a probability of
97.72 % acceptance at risk of false positives less than 2.5 %.

Thus, for example, at 8.7, we will have a lower acceptance limit equal to 7.60 g
and an upper acceptance limit of 8.40 g with a probability of false positive (consumer
risk) below 2.5 %.

8.8.2 Guard Band with r = 0.83 (w = 0.83 U)—ISO
14253-1:2017 Rule Decision

In this case, the protection band has a value of 0.83 of expanded uncertainty. We will
apply the guard band to the sandal production example for a TUR equal to five. With
the guard band w = 0.83 U, the risk of false positives is less than 5 % for any value of
TUR > 1 adopted.

Note that the » x U relationship is independent of the adopted TUR since when we
change the TUR, we must change the uncertainty of measurement U and, with that,
the size of the guard band w.

Thus, for example, at 8.7, we will have a lower acceptance limit equal to 7.58 g
and an upper acceptance limit of 8.42 g, with a probability of false positive
(consumer risk) below 5 %. The guard band will be equal to
w = 0.83 x 0.1 = 0.083 g (Table 8.9).

Ay=8.50-0.083=8.471=842 ¢
AL =750+0.083=7.583=758¢g
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::J:ilewsi' Oggl;: Sgvward ey Jer@) ooy [P P2 [P
750 | 20.00 0.00 100 1050 | 50.00%
758 | 18.34 ~1.66 100 1005 | 95.15%
7.60 | 18.00 —2.00 100 002 | 97.72%
7.0 | 16.00 —4.00 100 |0.00 | 100.00%
7.80 | 14.00 —6.00 100 |0.00 | 100.00%
7.90 | 12.00 —8.00 100 |0.00 | 100.00%
800 | 10.00 ~10.00 100 |0.00 | 100.00%
810 | 8.00 ~12.00 100 |0.00 | 100.00%
820 | 6.00 —14.00 100 |0.00 | 100.00%
830 | 4.00 ~16.00 100 |0.00 | 100.00%
840 | 2.00 ~18.00 098 |0.00 | 97.72%
842 | 1.66 —18.34 095 |0.00 | 95.15%
850 | 0.00 ~20.00 050 |0.00 | 50.00%

But if we consider, for example, a TUR equal to two, we will have U = 0.25 and
w =0.25 x 0.83 = 0.23.

Ay=8.50 — 023=827¢g
AL=750+023=773 ¢g

With the reduction of TUR, measurement uncertainty increases. This generates a
lower acceptance interval, which may imply more rejected measurements.

8.8.3 Guard Band withr = 1.5 (w = 1.5 U)—Three Sigma
Rule Decision

In this case, the protection band is 1.5 times expanded uncertainty. Applying the
guard band in the example of sandal production, for a TUR equal to five, we have
(Table 8.10):

With the guard band w = 1.5 U, we have, for any value of TUR > 1 adopted, a
risk of false positive less than 0.16 % (100 % — 99.87 % = 0.13 %).

Thus, for example, at 8.7, we will have a lower acceptance limit equal to 7.65 g
and an upper acceptance limit of 8.35 g, with a probability of false positives
(consumer risk) below 0.16 %. The guard band will be equal to
w=15%x01=0.15¢.
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::J:ilewsioll STZR =Seuard ey Jer@y) ooy [P [P [P
750 | 20.00 0.00 100 1050 | 50.00%
7.60 | 18.00 —2.00 100 1002 | 97.72%
7.65 | 17.00 ~3.00 100 000 | 99.87%
7.70 | 16.00 —4.00 100 |0.00 | 100.00%
7.80 | 14.00 —6.00 100 |0.00 | 100.00%
7.90 | 12.00 —8.00 100 |0.00 | 100.00%
800 | 10.00 ~10.00 100 |0.00 | 100.00%
810 | 8.00 ~12.00 100 |0.00 | 100.00%
820 | 6.00 —14.00 100 |0.00 | 100.00%
830 | 4.00 ~16.00 100 |0.00 | 100.00%
835 | 3.00 ~17.00 100 000 | 99.87%
840 | 2.00 —18.00 098 000 | 97.72%
850 | 0.00 ~20.00 050 |0.00 | 50.00%

Table 8.11 Probability of false positive (FP) for any TUR > 1

Guard band
Decision rule w Risk
Six Sigma 3U <1 ppm FP
Three Sigma 15U <0.16 % FP
ILAC G8:2009 U <2.5 % FP
ISO 14253-1:2017 083 U <5 % FP
Simple acceptance 0 <50 % FP
Defined by the rxu Customers can define » multiple arbitraries to apply as a
customer guard band

8.8.4 Guard Band with r = 3 (w = 3 U)—Six Sigma Rule
Decision

In this case, the protection band is three times expanded uncertainty. With the guard
band w = 3 U, we have, for any value of TUR > 1 adopted, a risk of false positive
less than 1 ppm (0.0001 %).

Thus, at 8.7, we will have a lower acceptance limit equal to 7.80 g (7.50 + 0.3)
and an upper acceptance limit of 8.20 g (8.50 — 0.3).

Table 8.11, copied from ILAC G8:09/2019 Guidelines on Decision Rules and
Statements of Conformity, summarizes some of the guard band values presented in
this chapter.

As we can observe in Graphs 8.1, 8.2, 8.3, 8.4 and 8.5, mass values between the
tolerance limits increase with the highest probability when the TUR increases. This
entails greater security in the results obtained.

Note that when TUR equals 1, a few values are approved for a given probability,
for example, 95 %. For this reason, we should not adopt TUR equal to 1. When TUR
equals 2, the values with the highest probability of occurrence within tolerance limits
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TUR=1
100.00%

95.00%

90.00%

85.00% F i %,

80.00% o %

75.00% 5 .
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60.00% m "
55.00% . .

50.00% L] L]

probability of being within the tolerance range (%)

45.00%

40.00%
740 750 760 770 780 790 800 810 820 830 840 850 8.60
measured mass value (g)

Graph 8.1 Probability x measured mass, for example 8.7 with TUR equal to one

TUR=2
105.00%

100.00%

90.00% 5 %

85.00% . %
80.00% e ®
75.00%
70.00%
65.00% . .
60.00% . .

55.00%

probability of being within the tolerance range (%)

50.00% . .
45.00%

40.00%
7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10 8.20 8.30 8.40 B.50 8.60
measured mass value (g)

Graph 8.2 Probability x measured mass, for example 8.7 with TUR equal to two

increase slightly. However, when TUR is equal to or greater than 3, we have a
significant improvement, being its point of excellence when it approaches TUR equal
to 10.
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TUR=3
105.00%
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Graph 8.3 probability x measured mass, for example 8.7 with TUR equal to three

TUR=5
105.00%

100.00%
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40.00%
7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10 8.20 B8.30 840 8.50 8.60
measured mass value (g)

Graph 8.4 Probability x measured mass, for example 8.7 with TUR equal to five
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TUR=10
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Graph 8.5 Probability x measured mass, for example 8.7 with TUR equal to 10

8.9 Proposed Exercises

8.9.1 A “specific risk” is a probability that an accepted item is not in compliance or a
rejected item is in accordance. Considering this definition, tick the correct
alternative.

(a) The “specific consumer risk” is the probability of accepting an item according
to, and the “specific risk of the producer” is the probability of rejecting an
item not according to.

(b) The “specific consumer risk” is the probability of accepting an item not
according to, and the “specific risk of the producer” is the probability of
rejecting an item according to.

(c) The “specific risk of the producer” is the probability of accepting an item not
according to, and the “specific consumer risk” is the probability of rejecting
an item according to.

(d) The “specific consumer risk” and the “specific risk of the producer” will
always be the same.

8.9.2. Check the alternative that best defines a binary decision rule.

(a) The result is limited to two options: approved/disapproved.
(b) We have two options; however, a guard band will always exist.
(c) When there is no possibility of using a non-binary decision rule.
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(d) When the result has two options: approved/disapproved and conditional
approved/conditional disapproved.

8.9.3. A gas container cylinder has a rupture pressure of 900 bar (lower tolerance
limit). In a destructive test, the cylinder rupture pressure was 910 bar. What is the
probability that the cylinder will meet the specifications? Consider the expanded
measurement uncertainty U of the test equal to 10 bar (k = 2.00 and 95.45 %).

8.9.4. Consider the temperature measurement of an industrial process, with standard
measurement uncertainty u#(y) = 0.5 °C. The process temperature tolerance
interval is 30.0 to 34.0 °C. Within this tolerance interval, determine the proba-
bility of finding the values of 34.0 °C, 32.0 °C, and 33.0 °C.

8.9.5. Check the alternative below that best defines the guard band and its use.

(a) Guard bands provide a straightforward way to define decision rules; by
choosing the size of the guard band, we will have 100% product approval.

(b) The use of guard bands provides a particularly simple way to define decision
rules; by choosing the size of the guard band, an acceptance zone with
95.45 % of the final product is defined.

(c) Guard bands provide a particularly simple way to define decision rules; by
choosing the size of the guard band, an acceptance zone can be defined.

(d) Guard bands provide a particularly simple way to define decision rules; by
choosing the size of the guard band, a rejection zone can be defined.

8.9.6. AS500 diesel oil should be a fuel with a maximum sulfur content of 500 mg/
kg. What should be the maximum sulfur content found in an AS500 diesel sample
so we have a 99 % probability of being out of the specification? Consider the
expanded measurement uncertainty of the test U = 4 mg/kg (k = 2.00 and
95.45 %).

8.9.7. Check the alternative that best defines TUR and its application.

(a) TUR is the relationship between process tolerance and measurement uncer-
tainty associated with the instrument that measures the quantity being eval-
uated in the process. For a given tolerance, increasing TUR means choosing
instruments with more significant measurement uncertainty and, conse-
quently, a higher acceptance interval.

(b) TUR is the relationship between process measurement uncertainty and toler-
ance associated with the instrument that measures the quantity being evalu-
ated in the process. For a given tolerance, increasing TUR means choosing
instruments with minor measurement uncertainty and, consequently, a minor
acceptance interval.

(c) TUR is the relationship between process tolerance and measurement uncer-
tainty associated with the instrument that measures the quantity being eval-
uated in the process. For a given tolerance, increasing TUR means choosing
instruments with more significant measurement uncertainty and, conse-
quently, a minor acceptance interval.
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(d) TUR is the relationship between process tolerance and measurement uncer-
tainty associated with the instrument that measures the quantity being eval-
uated in the process. For a given tolerance, increasing TUR means choosing
instruments with minor measurement uncertainty and, consequently, a greater
acceptance interval.

8.9.8. Consider the minimum value of the gasoline density at 20 °C as 715 kg/m®.
What should be the density value collected at a gas station so that we have a
99.9 % probability that it is adulterated (density below specification—a new
lower tolerance limit)? Consider the expanded uncertainty of the analysis as
5 kg/m® to k = 2.0 and 95.45 %.

8.9.9. Consider a food industry that needs to monitor the temperature of a cooking
process. The process temperature should be between 80 °C and 86 °C, not pass
this interval. Based on this information, answer:

(a) What is the tolerance interval of this process?
(b) What should be the expanded uncertainty of the thermometer used in the
temperature measurement if we adopt a TUR = 3?

8.9.10. Consider a honey processing industry that needs to transport honey in ducts
to automate the flood. As we know, honey is a viscous product that is difficult to
flow at ambient temperature. To facilitate the flow of the product, the piping is
heated from 44.0 °C to 50.0 °C and should not pass this interval. Based on this
information, answer:

(a) What are this process’s upper and lower limits of tolerance?
(b) Adopting a TUR equal to 5 will define lower and higher acceptance limits for
this process. Adopt a binary decision rule 3 sigma (w = 1.5 u).



Chapter 9
Critical Analysis of Calibration Certificate e

9.1 Introduction

Sometimes, a result may fall within or outside the limit of a specification, but
uncertainty can overlap with the limit, as shown in Fig. 9.1.

In Fig. 9.1, we see four cases of how a measurement result and its uncertainty may
be within the limits of a specification or tolerance.

In case (a), both the result and uncertainty fall within the specified limits. This is
classified as a “compliance.”

In case (d), neither the result nor any part of the uncertainty range falls into the
tolerance range. This is classified as “non-compliance.”

In cases (b) and (c), measurements and their respective uncertainties are neither
entirely within nor outside the boundaries. For this reason, these results are incon-
clusive and are in the range of doubt.

When conclusions are extracted from measurement results, measurement uncer-
tainty should not be neglected. This is particularly important when measurements are
used to verify that the result is within process tolerance or specification. Thus, we
need to define an acceptance criterion for the instrument used.

This is the central theme of this chapter.

9.2 Calibration Certificate

In the International Vocabulary of Metrology (VIM—2.39), we found in Note 1 of
the calibration definition: “A calibration may be expressed by a statement, calibra-
tion function, calibration diagram, calibration curve, or calibration table. In some
cases, it may consist of an additive or multiplicative correction of the indication with
associated measurement uncertainty.”
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P. P. Novellino do Rosario, A. Mendes, Metrology and Measurement Uncertainty,
https://doi.org/10.1007/978-3-031-82303-9_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-82303-9_9&domain=pdf
https://doi.org/10.1007/978-3-031-82303-9_9#DOI

264 9 Critical Analysis of Calibration Certificate
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Fig. 9.1 Representation of four different measurement results within a tolerance interval. (Source:
the authors)

We can consider that the document called Calibration Certificate, issued by the
laboratory that performed the service, encompasses some or all expressions of
calibration (declaration, function, diagram, curve, or table).

The certificate is an essential technical record and contains important information
on the instrument calibration process. Through this reported information, it is
possible to evaluate the conformity' of the measuring instrument.

The standard ISO/IEC 17025: 2017—General Requirements for the Competence
of Test and Calibration Laboratories determines that the calibration results contained
in a certificate must be presented clearly, objectively, and accurately, following the
specific instructions of the calibration method. The certificate should also include all
the information necessary for the correct interpretation of the results.

9.3 Calibration Certificate and ISO/IEC 17025

In Chap. 2, we present some management standards (ISO 9001, ISO/IEC 17025, and
ISO 10012) that all highlight the importance of calibration of measurement instru-
ments. However, none of them have a model or pattern for elaborating and
presenting a calibration certificate.

ISO/IEC 17025, although it does not define the model, establishes in requirement
7.8—Results Report—what minimum information required should be included in a
calibration certificate, namely:

(a) Title (e.g., calibration certificate).

(b) Name and address of the laboratory.

(c) Place of activities, including when carried out at the client’s facilities or outside
the laboratory’s permanent facilities.

! According to ISO/IEC 17000: 2004, conformity assessment is any activity performed to deter-
mine, directly or indirectly, whether a product, process, system, person, or body meets relevant
standards and complies with the specified requirements.
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(d) Univocal identification that all components are recognized as part of a complete
report and an identification of the end of the document.
(e) Client identification.
(f) Presentation of the method used in calibration.
(g) Identification of the calibrated instrument.
(h) Date of calibration.
(i) Date of issuance of the certificate.
(j) Declaration that the results apply only to the calibrated instrument.
(k) Presentation of calibration results, with their respective units of measure.
(1) Name, function, and identification of the authorized person to issue the
certificate.
(m) Declaration that the certificate should only be reproduced entirely.
(n) Environmental conditions from which calibration was performed.
(o) The uncertainties of measurement.
(p) Traceability of measurements.
(q) If there is any adjustment to the instrument, the results must be reported before
and after the adjustments.
(r) There should be no recommendation on the next calibration date unless the
customer has previously agreed.

In Fig. 9.2, we present an example of a fictitious glass liquid thermometer
calibration certificate, issued by the PP & AM Calibration Laboratory. The letters
highlighted signal the necessary minimum information, as established by ISO/IEC
17025. We have not included in the certificate the information related to the letters
“q” (adjustment) and “r”’ (new calibration recommendation).

9.4 Interpretation of Metrological Requirements
in Calibration Certificates

We reiterate that every measurement instrument important to the production process
should be calibrated. This allows us to know the associated errors and uncertainties.
The calibration certificate provides this information.

However, a certificate does not guarantee that the instrument meets the intended
requirements for its application in the measurement process, that is, a calibrated
instrument is not necessarily fit for use.

From the information found in the certificate, it is necessary to evaluate this
content to validate the use of the instrument.

Solved Exercise 9.1: Analytical Scale
Consider the analytical scale calibration certificate (Fig. 9.3). What should be
analyzed in this certificate to evaluate the scale conformity?
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PP & A M METROLOGY & UNCERTAINTY OF MEASUREMENT
. Address: 10012, Uncertainty Propagation Street
Calibration E-mail: m&um@uncertainty.com b ’ C
Laboratory | ppone: 0011 223344 55
d CALIBRATION CERTIFICATE N* 1324 / 2024
Customer Information
Company: | PPN&AM Metrology
Address: | 17025, Measurement Error Street e
E-mail: | ppn&am@ppn&am.com
Phone: | 003491010203
Calibrated object information
Manufacturer: High Temperature Class: NA

Description: Glass thermometer
Model: Partial immersion
Serial number: 123321123321

Resolution: 0.1 °C
Range: (0—100) °C

g

Method and procedure used 1‘

Calibration made by direct comparison, as described in the SOP 001 procedure - Standard Operating
Procedure for glass thermometers.

Traceability |J

Description TAG Model Manufacturer | Certificate Serial
Standard thermometer Pt—107 Pt—.'.LOO Ohms 107/24 ABC123
4 wires 2
Calibration results K
Indication Standard Object Bias Uncertainty « Degree of
*C °C *C = °C freedom
0 0.00 0.1 0.1 0.2 2.37 8
10 10.00 10.0 0.0 0.2 2.05 47
20 20.00 20.2 0.2 0.2 2.00 Infinite
30 30.00 30.0 0.0 0.3 2.05 47
40 40.00 40.0 0.0 0.3 2.02 102
50 50.00 50.1 0.1 0.3 2.11 23
60 60.00 60.1 0.1 0.4 2.06 40
70 70.00 70.2 0.2 0.5 2.07 35
80 80.00 80.0 0.0 0.5 2.06 40
90 90.00 90.1 0.1 0.5 2.02 102
100 100.00 100.2 0.2 0.6 2.00 Infinite
Envir::::ental nTempfcrature (20.6 £ 0.5) Hurl;;dlty (565) Pr:s::re (1018 £1)
Environment: ( x ) Stable { ) Unstable ( x ) Acclimatized

These results refer exclusively to the object described in this document in the specified conditions, not
extending to any other even if it is similar. It is not allowed the partial reproductiorf of this document.
Expanded uncertainty (U) reported corresponds to a coverage probability of 95.45%.

Calibration date: 3/6/2024 h i
’

Emission date:  3/6/2024
Galileu Galilei l

Metrologist technician

Lord Kelvin
Authorized firmer

d Page 1/1

Fig. 9.2 Example of a calibration certificate with the minimum information required by ISO/IEC
17025: 2017
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PP & A M METROLOGY & UNCERTAINTY OF MEASUREMENT
Address: 10012, Uncertainty Propagation Street
Calibration E-mail: m&um@uncertainty.com
Laboratory | ppne: 00 11 22 3344 55
CALIBRATION CERTIFICATE N°' 98765 / 2024
Customer Information
Company: | PPN&AM Metrology
Address: | 17025, Measurement Error Street
E-mail: | ppnBam@ppn&am.com
Phone: | 003491010203

Calibrated object information

Class: |

Resolution: 0.0001 g

Range: (0.1-200) g

Verification scale interval e: 0.001 g

Manufacturer: Digital Scales Co.
Description: analytical scale
Model: DAS-1

Serial number: 11111111111

Method and procedure used

Calibration made by direct comparison, as described in the POE 004 procedure - Standard Operating
Procedure for Analytical Scales.

Traceability
Description TAG Model Manufacturer | Certificate Serial
Set of standard weights JMP-01 E2 XYZW M2227/23 ABC123
Calibration results
Indication Standard Object Bias Uncertainty « Degree of
g g g mg mg freedom
20 19.999560 20.0004 0.8 0.8 2.03 84
50 50.000270 50.0009 0.6 0.9 2.02 126
60 60.000150 60.0010 0.8 0.9 2.02 126
100 100.000540 100.0014 0.9 1.1 2.01 251
150 150.000000 149.9999 -0.1 1.4 2.00 Infinite
200 200.001180 200.0045 3.3 1.6 2.00 Infinite
Emrir::gental Tempfcrature (206 +0.5) HI.II"I;;dIW (56+5) Pre:::re (10184 1)
Environment: (x)Stable ( )Unstable ( x ) Acclimatized

These results refer exclusively to the object described in this document in the specified conditions, not
extending to any other even if it is similar. It is not allowed the partial reproduction of this document.
Expanded uncertainty (U) reported corresponds to a coverage probability of 95.45%.

Calibration date: 6/8/2024
Emission date: 6/8/2024

Galileu Galilei
Metrologist technician

Lord Kelvin
Authorized firmer

Page 1/1

Fig. 9.3 Analytical scale calibration certificate

Solution:
First: Maximum Permissible Error (MPE).

The OIML R 76-1 Edition 2006 document—Non-Automatic Weighing Instru-

ments, Part 1: Metrological and Technical Requirements—Tests, establishes for
scales the value of the maximum permissible error on initial and in-service verifica-
tion, applying increasing and decreasing loads according to the instrument accuracy
class, as given in Table 9.1. The MPE in-service shall be twice the MPE on initial

verification.
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Table 9.2 Maximum permissible error for scale

Measurement range
0<m<50g 50g2<m<200g
Class I (0 <m <50,000 x 0.001 g) | (50 < m < 200,000 x 0.001 g)
Maximum permissible errors
(initial verification) +0.5 mg + 1.0 mg
(0.5 % 0.001) (1 x0.001)
Maximum permissible errors
(in-service) + 1.0 mg +2.0mg

In the case of the scale under analysis, we can observe in the calibration certificate
that the instrument is class I and the reading resolution is 0.0001 g and ¢ = 0.001 g.

According Table 9.2 the maximum permissible error (initial and in-service) per
measuring range will be:.

In the calibration certificate, we find the scale measurement bias. Comparing the
measurement bias values indicated on the certificate with the maximum allowable
error table by range, we can conclude that:

* m < 50 g: scale bias (0.8 mg) is lower than MPE in-service (1.0 mg) =
APPROVED.

* 50 g < m < 150 g: scale bias (0.9 mg) is lower than MPE in-service (2.0 mg) =
APPROVED.

* 150 g < m <200 g: scale bias (3.3 mg) is higher than MPE in-service (2.0 mg) =
DISAPPROVED!

Conclusion The scale needs to be adjusted to reduce its bias at the end of the range,
but if the adjustment is not performed, it should only be used in measurements
between 0 and 150 g.

Second: Final Uncertainty

We consider whether to weigh a particular substance in the laboratory using our
calibrated scale. We also think that the mass value of this product must be under-
stood in the interval of (50.0000 + 0.0100) g, that is, it must be between 49.9900 g
(T;—the lower limit of tolerance) and 50.0100 g (Ty—the upper tolerance limit).

The decision rule to be adopted is to consider a false positive of 2.5 % or less.

According to Table 8.11 (Chap. 8), if we use a guard band equal to expanded
uncertainty, we will have an acceptance interval where the probability of a value is
not equal to or less than 2.5%. The scale sheet certificate states that the measurement
uncertainty value (U) of 50 g is 0.9 mg (Fig. 9.4).

So, T;, = 49.9900 g and Ty = 50.0100 g. The control limits (A; and Ay) are:

Ap =T+ U=49.9900 + 0.0009 = 49.9909 g
Ay =Ty —U=50.0100 — 0.0009 =50.0091 g

According to the decision rule adopted, the mass result will always be acceptable
if it falls within the acceptance interval of 49.9909 g to 50.0091 g.
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49.9900 g 50.0100 g

50.0000 g
49.9909 g 50,0091 2

Fig. 9.4 Acceptance interval—Solved Exercise 9.1

Attention
We must correct the mass reading value by eliminating its bias.

Note that the acceptance interval was large, showing that we have many possible
mass values . This is because the TUR adopted for this scale is high. Let us see:

TUR = Toleranc.e /2
Uncertainty
0.01
TUR = 0.0000 — 11.1

Knowing a Little More ...
Scale verification

Among the calibration intervals, the instrument’s user should verify the
balance. The OIML R 76-1 (3.7.1 weights) document defines that the maxi-
mum permissible error of the default mass used in the scale verification or
calibration shall be 1/3 of the scale maximum permissible error at the point
considered. “In principle, the standard weights or standard masses used for
the type examination or verification of an instrument shall meet the metrolog-
ical requirements of OIML R 111. They shall not have an error greater than
1/3 of the maximum permissible error of the instrument for the applied load. If
they belong to class E2 or better, their uncertainty (rather than their error) is
allowed to be not greater than 1/3 of the maximum permissible error of the
instrument for the applied load, provided that the actual conventional mass
and the estimated long-term stability are taken into account.”

The choice of mass classes for scale calibration or verification should be
compatible with the scale’s maximum permissible error.

Table 9.2 Shows the maximum permissible error by measurement range for
our scale of solved exercise 9.1.

Then, up to 50 g:

(continued)
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MPE 455 < %
MPE,;ss < 13& =0.333 mg
Over 50 g:
MPE, .ss < 2?’& =(0.666 mg

Referring to Table 7.1 (Chap. 7):

* Up to 50 g—Class F; mass.
» Between 50 g and 200 g—Class E, mass.

Suppose the bias presented in the mass calibration certificate to be used in
the scale verification is greater than the maximum permissible error of the
class. In that case, the mass changes to a lower class.

9.5 Acceptance Criterion (AC) of a Measurement
Instrument

To date, we have discussed the analysis of a calibration certificate by verifying if it is
fit for use and meets the requirements of technical regulation, as well as calculating
the upper (Ay) and lower (A,) control limits.

In this section, we will analyze a calibration certificate by verifying whether the
measurement instrument is approved for use in an industrial measurement process.

The first step is to know the acceptance criterion adopted by the industry. The
acceptance criterion considers the maximum uncertainty of the instrument used to
verify the product’s conformity with its specification. Since the acceptance criterion
is a fraction of tolerance, it will always be less than the process tolerance.

To determine the AC, we must adopt the following relationship:

TL

TUR ranges from 3 to 10, and 7L is the process tolerance interval.

In Solved Exercise 9.1, the tolerance interval (7L) is equal to 0.01 g for measure-
ment at point 50 g.

If we adopt:

(a) TUR =10 -AC =0.001 g — A; =49.9900 + 0.001 = 49.9910 g and.
Ay = 50.0100-0.001 = 50.0090 g.
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Acceptance interval = [49.9910 to 50.0090] g.

(b) TUR=5—->AC=0.002 g — A; =49.9900 + 0.002 = 49.9920 g and.
Ay = 50.0100-0.002 = 50.0080 g.

Acceptance interval = [49.9920 to 50.0080] g.

(¢) TUR=3—>AC=0.0033 g — Ap =49.9900 + 0.0033 = 49.9933 g and.
Ay = 50.0100-0.0033 = 50.0067 g.

Acceptance interval = [49.9933 to 50.0067] g.

We can observe that the larger the TUR, the closer the acceptance limits will be to
the limits of specification or tolerance, which is very good but can also cause
problems. Let us see.

In item (a), AC for 50 g was 0.001 g. Is this scale approved or disapproved
for use?

If we perform the bias correction for 50 g when we measure, we will compare the
AC with the uncertainty of point measurement, which is worth 0.0009 g (see
certificate Fig. 9.3).

U (0.0009 g) < A.C (0.001 g)—Approved!

However, if we do not perform the bias correction, we must add the bias module
with expanded uncertainty at the desired point, in this case, 50 g. This we call
maximum uncertainty.

U maximum = |B‘0M |E| +U (92)
U maximum = 0.0006 + 0.0009 =0.0015 g

In this case, the scale is Disapproved!

U naximum (00015 g) >AC (0001 g)

Attention

We must correct the error or bias at the measurement point whenever possible.
Thus, we eliminate systematic error and only have random error, the measure-
ment uncertainty.

Now, analyzing item (c), the AC for point 50 g was 0.0033 g. Is the scale
approved for this use?

If, when we measure, we perform the bias for point 50 g, we will compare the AC
with the uncertainty of point measurement, which is worth 0.0009 g (see certificate
Fig. 9.3).

U (0.0009 g) < AC (0.0033 g) — Approved!

But, if we do not perform the bias correction, we will have:
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U maximum = 0.0006 + 0.0009 =0.0015 g
And the scale will remain approved.
Umaximum (0.0015 g) <AC (0.0033 g)

The advantage of TUR being large and, consequently, the small AC is that we will
be close to the specification limit and thus reject a few parts (products). The
significant disadvantage is that we will disapprove of many measuring instruments
or cannot find one that satisfies this requirement.

So far, we have analyzed the criterion of accepting an instrument for a desired
point. Still, the usual is to explore the instrument as a whole for a particular
measurement process.

Let us continue with the example of the Solved Exercise 9.1; however, now, no
longer for a single point, but analyzing the scale as a whole.

We want to adopt an acceptance criterion for the scale, whose certificate is
presented in Fig. 9.3. Let us consider that the tolerance interval of the mass
measurement process is +0.01 g. What acceptance criteria will we adopt for this
process?

To answer this question, we must analyze the measurement process performed
and verify that the measured values of the mass, for any point in your measurement
range, are under control if we do not have significant variability in the results
obtained from mass measurement.

Processes with high variability and large dispersions generate high uncertainties,
which can easily lead to values outside or close to tolerance limits, which should be
avoided.

To decide how many parts we will divide the tolerance interval (7L) of our
process, we must take into account some factors:

(a) Is the process under control? That is, the values of the variables under measure-
ment have little or no variation. If so, we can divide by a small TUR, for example,
3 or 4. If not, we should divide by a large TUR, for example, 8 or 10.

(b) Can the instrument we choose to control the process meet our AC? Is your error
or bias added to your measurement uncertainty inferior or equal to the AC? A
good choice is associated with the resolution of the instrument. It is known, from
experience, that the uncertainty of measuring an instrument in perfect condition
usually has its value guided by its resolution. We must always choose an
instrument that has better resolution than process tolerance. Typically, resolution
is ten times less than process tolerance.

(c) Often, an instrument of measurement has its maximum permissible error (MPE)
defined by standard or technical regulation. We cannot choose an instrument
whose AC is greater than the MPE.

Consider that the scale measurement of the Solved Exercise 9.1 is under control,
with little or no variability. So, let us divide the process tolerance interval by four.



274

Table 9.3 Calibration results
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Calibration results
Indication Standard Object Bias Uncertainty k Degree of
g B i Mg me freedom
20 19.999560 20.0004 0.8 0.8 2.03 84
50 50.000270 50.0009 0.6 0.9 2.02 126
60 60,000150 60.0010 0.8 0.9 2,02 126
100 100.000540 100.0014 0.9 11 2.01 251
150 150.000000 | 149.9999 0.1 14 2.00 Infinite
200 200.001180 200.0045 ) ] 1.6 2.00 _Infinite
ac=291 60025 ¢

4

If we adopt this acceptance criterion, will the balance of Solved Exercise 9.1 be
approved for use in this measurement process? How will we analyze the balance for
the entire measurement range we have? (Table 9.3)

The highest uncertainty of scale measurement is 1.6 mg (0.0016 g). If we correct

the bias, this measurement uncertainty will be enough to compare with the adopted
AC.

U (0.0016 g) <AC (0.0025 g) - Approved!
But if we do not perform the reading correction, we will have:
Umaximum (0.0016 g + 0.0033 g) >AC (0.0025 g) -Disapproved!

In addition to defining an acceptance criterion, we must define a decision rule.

Attention!
Evaluating the results of a calibration without defining acceptance criteria is
not very useful. The acceptance criterion determines whether a measurement
instrument is approved for the required use.

To define the acceptance criteria, we must take into account at least the
following factors:

* Measurement variability—We want processes under control;

* Maximum permissible error by the method—We do not wish to AC
superior to the MPE;

* Accuracy required by the method;

* Maximum uncertainty accepted for measurements.
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Table 9.4 Calibration certificate

Calibration certificate—Class A

Nominal value | Measured value | Error | Uncertainty | Coverage factor
mL mL mL mL (95.45 %) Degree of freedom
500 500.145 0.145 |0.008 2.00 )
Table 9.5 MPE for volumet- Capacity MPE (mL)
ric balloon (mL) Class A Class B
5 0.02 0.04
10 0.02 0.04
25 0.03 0.06
50 0.05 0.10
100 0.08 0.16
250 0.10 0.20
500 0.12 0.24
1000 0.20 0.40
2000 0.30 0.60
4000 0.50 1.00

Solved Exercise 9.2: Volumetric Balloon (Laboratory Glassware).
Analyze the data from the volumetric calibration certificate comparing with ASTM E
288, and consider the volumetric balloon AC as 0.05 mL (Table 9.4).

Solution
(a) MPE.

According to ASTM E 288, we have the following MPEs for volumetric balloons
(Table 9.5):

In Table 9.5, the maximum error for a volume of 500 mL and class A is 0.12 mL.
As the error presented in the calibration was 0.145 mL, the volumetric balloon can
no longer be considered class A and moves to class B (maximum error of 0.24 mL).

(b) Maximum uncertainty.

U maximum = |E| + |U|

U maximum = (0.145 + 0.008) mL =0.153 mL
U maximum = 0.15 mL >AC=0.05 mL — Disapproved
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Knowing a Little More ...
Laboratory glassware calibration

Glassware used in laboratories is classified according to the maximum
acceptable errors in class A and class B. Class B is calibrated with errors
that usually comprise twice the error allowed for class A. Beyond this classi-
fication, they are also known as:

e TD (to deliver) glassware—Indicate the volume raised or transferred by
glassware (e.g., pipette and burette).

* TC (to contain) glassware—Indicate the volume contained by glassware
(e.g., volumetric balloon).

According to the ASTM E542 standard, glassware may remain indefinitely
calibrated if it is not subjected to extreme conditions, such as temperatures
above 150 °C or contact with fluoride acid, heated phosphoric acid, or heated
strong bases.

Practical recommendation: Calibrate every 5 years of use or when the
surface indicates wear.

Equipment required for the calibration of laboratory glassware (Table 9.6):

Glassware verification

Among the calibration intervals, the glassware verification is performed at
least once a year at the reference temperature of 20 °C (water and laboratory
environment) and using distilled water. Table 9.7 relates the glassware capac-
ity to the scale used in the verification.

Volumetric calibration is performed using distilled water, with its density
taken into account. The equation used is:

m
Vopor = —
20°C P)

The mass m is the difference between the mass of full and empty glassware.
The water density can be corrected, as per Table 9.8, if the water temper-
ature is not 20 ° C.

Glassware MPE (Tables 9.9, 9.10, 9.11, and 9.12)

Table 9.6 Instruments used in the glassware calibration

Quantity Equipment Measurement range | Minimum resolution
Ambient and water temperature | Thermometer | (15 +5) °C 0.1°C

Pipette and burette flow time Timer 15 min Is

Relative humidity Hygrometer (50 + 30) % 1%

Atmospheric pressure Barometer (1000 + 100) hPa 1 hPa
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Table 9.7 Glassware capac-
ity X scale resolution

Table 9.8 Water density x
temperature

Table 9.9 Pipettes with pis-
ton (ISO 8655-2:2002)

Table 9.10 Burettes (ASTM
E287)
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Capacity Resolution (mg)
1 pL < Vg oc < 10 pL 0.001
10 pL < Vi oc < 100 pL 0.01
100 pL < Vg oc < 1000 pL 0.1
1 mL < Vg oc £ 10 mL 0.1
10 mL < V54 oc < 200 mL 1
200 mL < V5 oc < 1000 mL 10
Temperature Density
0 (glem?)
18 0.99860
19 0.99840
20 0.99820
21 0.99799
22 0.99777
Capacity (pL) MPE (pL)
1 0.05
10 0.12
100 0.8

1000 8
10,000 60
Capacity MPE (mL) +
(mL) Class A Class B

10 0.02 0.04

25 0.03 0.06

50 0.05 0.10
100 0.10 0.20
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Table 9.11 Volumetric .
pipettes (ASTM E969) Ei;‘ia)“:‘ty gl:s (XIL) + B
0.5 0.006 0.012
1 0.006 0.012
2 0.006 0.012
3 0.01 0.02
4 0.01 0.02
5 0.01 0.02
6 0.01 0.03
7 0.01 0.03
8 0.02 0.04
9 0.02 0.04
10 0.02 0.04
15 0.03 0.06
20 0.03 0.06
25 0.03 0.06
30 0.03 0.06
Table 9.12 Cylinders and MPE (mL) +
beakers (ASTM E1272) Capacity (mL) Class A Class B
5 0.05 0.10
10 0.10 0.20
25 0.17 0.34
50 0.25 0.50
100 0.50 1.00
250 1.00 2.00
500 2.00 4.00
1000 3.00 6.00
2000 6.00 12.00
4000 14.50 29.00

Solved Exercise 9.3: Elaboration of the Acceptance Criterion and Analysis of
the Thermometer Calibration Certificate Used in the Process.

Consider a honey processing industry that needs to transport honey in ducts to
automate the flood. As we know, honey is a viscous product that is difficult to flow at
ambient temperature. To facilitate the flow of the product, the piping is heated
between 44 ° C and 50 ° C and should not pass this interval. Adopt, as a decision
rule, a false positive less than 2.5 %. Reply:

(a) What should be the mean process control temperature?

(b) What is the tolerance interval of this process?

(c) Considering the process is under control, what should the AC for the thermom-
eters used to control this temperature be?
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(d) In the market, is there a thermometer to serve the established AC? Which one?
What should its resolution be?

(e) How should this process be controlled for the statement decision rule?

(f) How should this process be controlled if we consider simple acceptance?

(g) Considering the calibration certificate of one of the thermometers adopted in the
measurement process, such as shown in Fig. 9.6, answer if the thermometer is
approved concerning the AC adopted in item c.

Solution:

(a) Mean temperature = 47 °C.
(b) Tolerance interval—TL = + 3 °C.
(c) Considering the process under control, we can use a TUR = 3.

(50 — 44)

3
_ 2 _ 2 _1o0
AC= 3 —3—1 C

(d) Yes. Resistance thermometer (PT-100 3 wires) or type K thermocouple, both
with resolution 0.1 ° C. Ensuring that the instrument’s resolution is ten times
lower than AC is always essential.

(e) InTable 8.11, we have that the guard band used for a probability of false positive
2.5 % is equal to the AC (Fig. 9.5).

As the acceptance limit is between (45 and 49) °C, we must inform the temper-
ature controller coupled to the thermometers that when the temperature reaches close
to 45 °C, the thermal blanket that surrounds the metallic ducts should be turned
on. When the temperature reaches 49 °C, it should be turned off. We will always
have a safety margin, the 1 °C guard band, at risk of measurement outside the
specification [44-50] °C less than 2.5 %.

(f) If we adopt a simple acceptance as a decision rule, we will have:

In this case, acceptance limits will equal tolerance limits, and we risk a false
positive of less than 50%, especially when we approach tolerance limits.

— — o
Aymatrl =4 Ay=50—1=149 °C

acceptance zone

44°C 47°C 50 °C

Fig. 9.5 Acceptance zone
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T =AL Tu= Ay
acceptallce zone

44 °C 47 °C 50 °C

Fig. 9.6 Acceptance zone

(g) Note that the thermometer calibration certificate of Fig. 9.6 has its maximum
uncertainty (U aximum) in the use range (44-50) °C of 0.4 °C (Fig. 9.7).

B=0.1°C;U=03°C

01+03=04°C
Umaximum (0.4°C) <AC (1°C)

Thermometer approved for use in the process!

9.6 Proposed Exercises

9.5.1 Regarding the Calibration Certificate, check (R) for the correct statements and
(W) for the wrong ones (Table 9.13).

9.5.2 Table 9.14 shows the calibration result of a Bourdon-type gauge, class 1.0,
with a measurement range between 0 and 60 bar and 0.5 bar resolution.

Based Table 9.14, ensure the object gauge can continue to be used as class 1.0.

9.5.3 Consider the calibration certificate presented. According to ISO/IEC 17025:
2017, what information is needed and missing? (Fig. 9.8)

9.5.4 A 25 mL burette, class B, was calibrated, and the data obtained were: measured
volume = 25.05 mL; uncertainty = 0.01 mL. Based on this information, ensure
the burette can continue to be used as class B and meets an AC of 0.1 mL.

9.5.5 The pulley of an engine must have a width of (25.000 + 0.012) mm and a
diameter of (960.0 = 1.5) mm. To measure the width, a micrometer with a
maximum uncertainty of 0.002 mm and a digital tape with a maximum uncer-
tainty of 0.5 mm for the diameter. What should be the control limits of the
manufacture of this pulley considering these measuring instruments? Adopt a
95 % decision rule.
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METROLOGY & UNCERTAINTY OF MEASUREMENT
PP&AM Address: 10012, Uncertainty Propagation Street
E-mail: m&um@uncertainty.com
Laboratory | phone: 00 11 22 33 44 55
CALIBRATION CERTIFICATE N* 1234 / 2024

Customer Information

Calibration

Company: | PPN&AM Metrology
Address: | 17025, Measurement Error Street
E-mail: | ppn&am@ppn&am.com
Phone: | 0034 91 0102 03
Calibrated object information

Manufacturer: High Temperature Class: NA
Description: Glass thermometer Resolution: 0.1 °C
Model: Partial immersion Range: (0—-100) °C

Serial number: 123321123321

Method and procedure used
Calibration made by direct comparison, as described in the SOP 001 procedure - Standard Operating
Procedure for glass thermometers.

Traceability
Description TAG Model Manufacturer | Certificate Serial
Standard thermometer Pt—107 P‘t-i_lOO Ohms 107/24 ABC123
4 wires
Calibration results
Indication Standard Object Bias Uncertainty P Degree of
‘€ °C *C *C *C freedom
0 0.00 0,1 0,1 0.2 237 8
10 10.00 10.0 0.0 0.2 2.05 47
20 20.00 20.2 0.2 0.2 2.00 Infinite
30 30.00 30.0 0.0 0.3 2.05 47
40 40.00 40.0 0.0 03 2.02 102
50 50.00 50.1 0.1 0.3 2.11 23
60 60.00 60.1 0.1 0.4 2.06 40
70 70.00 70.2 0.2 0.5 2.07 35
80 80.00 80.0 0.0 0.5 2.06 40
90 90.00 90.1 0.1 0.5 2.02 102
100 100.00 100.2 0.2 0.6 2.00 Infinite
Environmental | Temperature Humidity Pressure
data o (20.6 £ 0.5) % (56 +5) hPa (1018+1)

Environment: ( x ) Stable { ) Unstable ( x ) Acclimatized

These results refer exclusively to the object described in this document in the specified conditions, not
extending to any other even if it is similar. It is not allowed the partial reproduction of this document.
Expanded uncertainty (U) reported corresponds to a coverage probability of 95.45%.

Calibration date: 3/6/2024

Emission date: 3/6/2024

Galileu Galilei Lord Kelvin
Metrologist technician Authorized firmer

Page 1/1

Fig. 9.7 Thermometer calibration certificate for Solved Exercise 9.3
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Table 9.13 Calibration certificate

() | The calibration certificate is a technical record that enables the user to measure instrument
conformity assessment.

() | The laboratory that performs the measuring instrument calibration will never make any
recommendation on the periodicity of calibration.

() | The calibration laboratory does not usually adjust the measurement instrument; however,
results should be reported before and after adjustment if this is done.

() | The certificate must present calibration results in the units of measure used and declare the
measurement uncertainty, scope factor, and confidence level used.

() | The environmental conditions of the calibration site only need to be declared if they affect
the calibration result.

Table 9.14 Gauge calibra- Standard (bar)

tion result Object Discharge Discharge
(bar) Charge 1 1 Charge 2 2

5.0 5.00 5.20 5.25 5.25

15.0 15.25 15.55 15.00 15.50
25.0 25.00 25.55 25.50 25.55
35.0 35.25 35.00 35.50 35.25
45.0 44.55 45.05 45.00 45.50
55.0 56.00 56.00 55.55 55.50
60.0 60.00 60.00 60.00 60.00

9.5.6 A micrometer was adopted for quality control in serial production of a length
part (15.00 + 0.05) mm. Considering the acceptance criterion (AC) as 0.017 mm
(1/3 of tolerance), determine the upper control limits (A;) and the lower control
limit (A;) of the part. Adopt the false positive decision rule of less than 2.5 %.

9.5.7 How can we prove whether a measurement instrument meets the desired
acceptance criterion?

(a) Buying the instrument indicated by the manufacturer.

(b) Calibrating the instrument in a competent laboratory and analyzing its
certificate.

(c) Performing checks with a standard in the company itself.

(d) Authorizing its use only by qualified personnel.

9.5.8 What is the main objective of calibrating a measurement instrument?

(a) Know the errors and uncertainty of measurement at each calibrated point and
correct, if necessary, the instrument’s readings.

(b) Meet management standards applied to measurement instruments.

(c) Obtain the calibration certificate to guarantee the measurement instrument is
in perfect condition.

(d) Make adjustments by minimizing their measurement errors.
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PP&A M METROLOGY & UNCERTAINTY OF MEASUREMENT
o Address: 10012, Uncertainty Propagation Street
E-mail: m&um@uncertainty.com
Phone: 001122334455
CALIBRATION CERTIFICATE N° 98765 / 2024
Customer Information

Calibration
Laboratory

Company: | PPN&AM Metrology
Address: | 17025, Measurement Ermror Street
E-mail: | ppn&am@ppn&am.com
Phone: | 003491010203

Calibrated object information

Manufacturer: Digital Scales Co. Class: |
Description: analytical scale Resolution: 0.0001 g
Model: DAS-1 Range: (0.1-200) g
Serial number: 11111111111 Verification scale interval e: 0.001 g
Traceability
Description TAG Model Manufactur | Certificat Serial
er e
Set of standard weights JMP-01 E2 XYZW M2227/23 ABC123
Calibration results
Indication Standard Object Bias Uncertainty K Degree of
g g g mg mg freedom
20 19.999560 20.0004 0.8 0.8 2.03 84
50 50.000270 50.0009 0.6 0.9 2.02 126
60 60.000150 60.0010 0.8 0.9 2.02 126
100 100.000540 100.0014 0.9 1.1 2.01 251
150 150.000000 149.9999 -0.1 1.4 2.00 Infinite
200 200.001180 | 200.0045 3.3 1.6 2.00 Infinite
E““'::::’""l t°""°::"""° (20.620.5) H"":d“' (56 5) P':’;:“ (101821)
Environment: (x)Stable ( )Unstable (x)Acclimatized
Emission date: 6/8/2024
Galileu Galilei Lord Ketvin
Metrologist technician Authorized firmer
Page 1/1

Fig. 9.8 Thermometer calibration certificate for solved exercise

9.5.9 If the calibration certificate of a measurement instrument has a measurement

error above expected, however, the instrument is not with its functionality
affected, which CANNOT be done:

(a) Ask the laboratory to adjust to reduce its measurement error, and then make a
new calibration.

(b) Use the instrument without any caveat, remembering to calibrate again in the
defined period.

(c) Create mathematical corrections for errors and apply them to their use.

(d) Remove the measuring instrument.
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9.5.10 To know if a measuring instrument is adapting to the intended use:

(a) The measuring instrument should be appropriately functioning and calibrated
periodically.

(b) Periodic checks must be performed.

(c) Acceptance criteria should be established and sent to calibration, and the
results should be evaluated.

(d) Acceptance criteria must be established, and the equipment must be sent for
calibration.

9.5.11 What does a calibration of a measurement instrument consist of?

(a) In comparing the values obtained by it in the face of standards, a certificate
with the values of their errors and measurement uncertainty is obtained.

(b) In comparing the values obtained by it in the face of standards by obtaining a
certificate with only the values of their measurement errors.

(¢) In the maintenance of the measuring instrument.

(d) In its periodic adjustment.

9.5.12 To evaluate a calibration certificate, it must be established primarily before:

(a) The periodicity of the calibration of the measurement instruments.
(b) The acceptance criteria for the results.

(c) The laboratory that will calibrate.

(d) The purchase of a new measurement instrument.

9.5.13 Must any measurement instrument be calibrated?

(a) Yes, measurement instruments cannot be used without being calibrated.

(b) Yes, otherwise, it leads to non-conformities in audits.

(c) No, the need for its measurements in the face of the process requirements
should be evaluated.

(d) No, we need to calibrate after some failure is found.

9.5.14 When analyzing a calibration certificate, what alternative represents the
primary information we should evaluate?

(a) If the laboratory that calibrated the measuring instrument is accredited.
(b) If the error results and measurement uncertainty are presented.

(c) If the authorized signatory signed the Calibration Certificate.

(d) The traceability of the standards used is contained in the certificate.

9.5.15 The calibration results of a measurement instrument did not meet the accep-
tance criteria. What should be done?

(a) Discard the measuring instrument.

(b) Evaluate whether error adjustment or the use of the measuring instrument in
other bands is possible.

(c) Perform a new calibration until the expected value is obtained.

(d) Modify the acceptance criteria, so that it can be accepted.
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Chapter 1
1.3.1 (b) 1.3.2 (a)
1.3.3 (a) 1.3.4 (d)
1.3.5 (¢) 1.3.6 (¢)
1.3.7 (b) 1.3.8 (a)
1.3.9 (a) 1.3.10 (d)
1.3.11 (a) 1.3.12 (a)
1.3.13 (¢) 1.3.14 (d)
1.3.15 (¢) 1.3.16 (b)
1.3.17 (b) 1.3.18 (a)
1.3.19 (b) 1.3.20 (¢)
1.3.21 (b) 1.3.22 (b)
1.3.23 (¢) 1.3.24 (¢)
1.325n=2
. _ dim(v")
dim() = g @
dim(x) =L
dim(v) =LT ' .dim(v") = (LT )"
dim(a) =LT >
er)”
L =
LT 2
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1.3.26 (c)
1327 kgs™
E
=5
Unit of E: m* kg s
Unit of §: m?
Unit of #: s
Unit of I: % =kgs3
1.3.28 (d)
1329kgm™*
f
k - E

Unit of £ m kg s>
Unit of v*: m?s~2
Unit of k: mkzgss:zz =kgm™!

m

Chapter 2

2.11.1 'm afraid I have to disagree. Traceability is only guaranteed when the
instrument, even new, is calibrated with recognized standards and accepted
nationally or internationally.

2.11.2 Metrology is the science of measurement and its applications and includes all
theoretical and practical aspects of measurement, whatever the uncertainty of
measurement and the field of application.

2.11.3

Legal Metrology
It is the area of metrology closest to the ordinary citizen, whose primary function is
to protect products and services that involve and need some measurement. It is
defined by the International Organization of Legal Metrology (OIML) as: “the
application of legal requirements for measurement and instruments.” Metrological
regulations based on the OIML guidelines establish the technical requirements,
metrological control, use, and marking requirements, as well as the requirements
of the units of measure that must be met by manufacturers and by users of the
measuring instruments.

In addition to commercial activities, measuring instruments used in official
activities, medical areas, medicine manufacture, occupational, environmental
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protection, and radiation are subject to metrological control. In these cases, control
assumes special importance in the face of the dangerous negative effects that wrong
results can cause human health.

Scientific Metrology

Scientific and industrial metrology promotes competitiveness and provides an envi-
ronment favorable to the country’s scientific and industrial development. It is also
essential to technological innovation. BIPM coordinates the process, is responsible
for the basic metrological quantities with reliability equal to that of the countries of
the first world, and transfers measurement standards to the society.

2.11.4 This is the area of metrology closest to the common citizen, whose primary
function is to ensure the protection of products and services that involve and
require some measurement. It is defined by the International Organization of
Legal Metrology (OIML) as: “the application of legal requirements for measure-
ment and instruments”. Metrological regulations based on OIML guidelines
establish the technical, metrological control, usage and marking requirements,
as well as the requirements for units of measurement that must be met by
manufacturers and users of measuring instruments.

2.11.5

» Single description and identification of the instrument: type, model, serial
number, manufacturer, etc.

» The date that metrological evidence was performed.

» Evidence results.

» Interval of the next evidence.

» Identification of the procedure (or method, norm, instruction, etc.) of evidence.

*  Maximum acceptable or permissible errors.

» Relevant environmental conditions and declaration on necessary corrections.

* Uncertainties involved in calibration.

* Provide details of any intervention (maintenance, adjustment, modification) in
the measuring instrument.

¢ Use limitations.

¢ Identification of those who performed the metrological evidence.

* Identification of those responsible for any corrections of information recorded.

» Single identification of the report or calibration certificate.

» Traceability of measurement results.

* Metrological requirements for intended use.

* The calibration result was performed after, and where required, before any
intervention in the measuring instrument.

2.11.6 Quantity that does not affect the quantity effectively measured, but affects the
relationship between the indication and the result of the measurement.

2.11.7 The International Organization of Legal Metrology (OIML)

2.11.8 It means that the laboratory’s competence to perform calibrations or tests was
recognized by an accrediting organism based on the ISO/IEC 17025:2017
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standard, according to the guidelines established by the International Laboratory
Accreditation Cooperation (ILAC) and the Good Practices Codes (GPC) from the
Organization for Economic Co-Operation and Development (OECD).

2.11.9

A technical standard is a document established by consensus and approved by a
recognized organism that provides minimum rules, guidelines, or characteristics
for activities or their results, aiming to obtain a great degree of sorting in a given
context. The technical standard is voluntary, that is, not mandatory by law.

A technical regulation is a document adopted by an authority with legal power that
contains mandatory rules and establishes technical requirements, either directly
by reference to technical standards or by incorporating their content, in whole or
in part. In general, technical regulations aim to ensure aspects related to health,
safety, environment, consumer protection, and fair competition. Compliance with
a technical regulation is mandatory, and non-compliance with the corresponding
punishment is illegal.

2.11.10 VIM is a document that seeks international harmonization of the terminol-
ogies and definitions used in metrology and instrumentation.

Chapter 3
3.3.1
(a) 34.4m ()239m
(c)84m (d) 197 m
(©)43.5m (f) 43.9 m
(g) 52.4 m (h) 66.7 m
3.3.2
(a) 4 (b)2
(©1 d4
333
() 479 m (b) 642 kg
() 123L (d) 56.2 cm
334

(a) 89.5m

(b) 8.2 m?

(c) 555m
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335

(@) 4 x 10° (b) 0.002
(c) 0.0006 (d) 0.00003
3.3.6

3.3.7

(a) 268.1 (b) 286.54

(c) 132.32 (d) 129

() 5.0 (f) 114.7

(g) 0.87 (h) 1.7 x 10?

(1) 4.2 () 1.4 x 10?

&) 0.1712 s

(1) 3.0 x 10° — 1.5 x 10*> = 3.0 x 10 (the result must have the same number of decimal digits of
the portion that has the smallest number of decimal digits)

HISTOGRAM

FREQUENCY

12
10
8
6
4
2
0

2.00-2.20 2.20-2.40

a+b  (299+201)V

240-260 260-280 2.80-3.00

CLASS

=25V

xXxX=

2

b—a (299-201)V

2

S = =

338

=0.283V
V12
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HISTOGRAM

25

20

FREQUENCY

(%]

, H =

23.5-23.7 23.7-239 239-241 241-243 243-245 245-24.7

CLASS

339a=(11.5x 10_6 + 0.2 % 10—6) oC—l

Uniform distribution

a=113x10"% °oCc!
b=11.7x10"% °C!

_b—a

s =0.1x10"%°C!

E

3.3.10
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Histogram

16

14

12

10

8

6

1 1

N | ] =

128.4-1285 1285-128.6 128.6—-128.7 128.7-128.8 128.8-128.9 128.9-129.0 129.0-more

N

(b) The histogram shows a distribution that tends to be normal.

n _ 2
% —0.1282885 V

(c) To determine the probability interval of 95.45%, we must calculate the degree of
freedom and the factor k. With 60 measurements, we have a degree of freedom of
59 (n—1). Consulting the #-Student table, we have k = 2.043. Therefore, to
95.45%, we have 2.042 x 0.1282885 = 0.262096 V. Note that here, we do not
calculate the standard deviation of the mean, since we want to determine the
interval in which we have the probability of 95.45% of finding a measurement
within the 60 performed.

p= % —128.74 V

Interval = (128.74+0.26) V [128.48 V; 129.00 V]

(d) Within the interval, we have 57 measurements totaling 95.00% of the measured
values.

(e) As we now wish for the interval where we will find the mean of measurements,
we will work with the concept of standard deviation from the mean.

_ s _ 0'1282885V:O.016562V

R /60



292 Proposed Exercises—Answers and Solutions

For n = 60, we have the degree of freedom = 59, and k = 2.043. The interval
will be:

k s =2.043 x0.016562 V =0.033836 V

Then, with 95.45% probability, we will find the mean of 60 measurements in the
interval (128.74 + 0.03) V.

3.3.11
(a) Scale 1: = Z =14.95 kg
Scale 2: = 21" = 14.97 kg
n - 2
(b) Seale 1: s =\ 2= _ 0187083 ke

Seale 2: 5= |/ 217" 0320416 kg
"2
(©) Scale 2: 5= |/ 25" _ 0, 320416 ke

(d) Interval with 95.45%: X+ k s(x)
t-Student table — n = 6, k = 2.649

Scale 1: 5(x) = =T =0.076376 kg

Scale 2: s(x) = 220 =0.130809 kg

Scale 1: (14.95 + 0.20) kg
Scale 2: (14.97 + 0.35) kg

33.12

(a) 7.23 pH
(b) 0.012247

3.3.13

(a) Considering that eight measurements imply a degree of freedom equal to
7 and consulting the 7-Student table, we find that for the degree of freedom
7, we have k = 1.077, and we will have U = k - s = 0.642 °C, so the interval
will be (48.3 to 49.5) °C—68.27 %.

(b) To95.45 %, we have k = 2.429, implying to k - s = 1.4574 °C, so the interval
will be (47.4 to 50.4) °C.

(c) To 99.7 %, we have k = 4.442, implying to k - s = 2.6652 °C, so the interval
will be (46.2 to 51.6) °C.



Proposed Exercises—Answers and Solutions

Chapter 4

451

(a) 0.1 bar
(b) 0.05 bar
(c) 0.30 bar

452

(a) 2°C
(b) 1°C
(c) 20°C

4.53 11 bar
4.5.4 (b)
4.5.5 (b)
4.5.6

(a) Maximum error = 0.8/200 = 0.4%; Hysteresis = 1.2/200 = 0.6 %
(b) Maximum error = 0.8/65 = 1.23%; Hysteresis = 1.2/65 = 1.85 %

4.5.7

(a) ¥= 21—0 =1597 Q
(b) B=15.97 - 15977 = — 0.007 Q = — 0.01 Q
) E= (1595 — 15977) Q = — 0.027 Q = — 0.03 Q

45.8

(a) B=1(20.5-20.0)°C =0.5°C
(b) E=(21.0-20.0)°C=1°C

459 C = (45— 1) psi = 44 psi
4.5.10 (a)

4.5.11 (b)

4.5.12 (d)

4.5.13 (d)

4.5.14

(@) 1°C;2°F
(b) 1°C;2°F
(c) 21 °C; 70 °F

4.5.15

293
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(a) 0.5V

(b) 025V
(c)(0al5)V

(d) 2% x15V=03V

4.5.16

(a) The precision of an instrument is related to little or no dispersion of the
measured values. This can be found in the standard deviation of measure-
ments. The standard deviation of multimeter one is 0.01 Q, and multimeter
two is 0.02 Q. Therefore, multimeter 1 is more precise.

(b) The accuracy of a measurement instrument is related to its lower error;
multimeter one is more accurate since its error is 0.03 Q, and the multimeter

two error equals 0.04 Q.

4.5.17

(a) Point 5, the bias is zero.
(b) Point 2, the highest bias, 0.004 g.
(c) Mean = 5.004 g
Bias in this point = 0.002 g
Correct value = (5.004 — 0.002) g =5.002 g

4.5.18

(a) Correction of the standard = (50.2 + 0.3) °C = 50.5 °C
(b) Mean of the object = 50 °C
Bias of the object = (50 — 50.5) °C = — 0.5 °C = 0 °C (the resolution of
the object is 1 °C)
(c) Correction = 0 °C.

Chapter 5

5.11.1

(a) 2 km/h

(b) 2%

©) 4%

(d) 40 %

(e) The point of 200 km/h = 1 %.
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5.11.2
(a) (1764 +0.2) cm
(b) (1.764 + 0.002) m
5.11.3

(a) 0.64 s

) sx= \/ig =0.004472 s

(c) The standard deviation of the mean.
D verr=5—-1=4—>k=2.869

U=uy . k=0.004472x2.869=0.0128 s=0.01s

5114
(@5
(b) 0.44 s
(©) sy= 2 =0.012247 5
(@)
ue=/13 + 12, .. =/0.012247* +0.012=0.015811 s
4
Veffzio'o15811 =11—k=2.26

<).01i2474 +%
U=2.26x0.015811s=0.04 s

(e) u. =uy =0.012247 s

Ve =n—1=4—k=287 U=2.87x0.012247s=0.04 s

5.11.5

The mean of the measurements is 256.98 mm, but as the resolution is 0.05 mm,
we have to round to 257.00 mm.

Uncertainty of repeatability: us = 2= = 0.06355 = 0.032275 mm

Combined uncertainty:

Ue=1/12 + 12, = 1/0.0032275> + 0.025> = 0.040825 mm

Degree of freedom and expanded uncertainty:
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4
Veff = I;l—f =7.685k=243—U=2.43x%0.040825 mm =0.10 mm
?A
d=(257.00+0.10) mm
5.11.6

(a) x=10.156 mm — B=%— TV =(10.156 — 10.1538)mm = 0.002 mm

(b) g = 5 = ©091826 — 0,000577 mm

(©) te =12 +ul = \/ 0.0005772 + (0.002/2.23)* =0.001067 mm

micro

i

u
c
Veff = P =19.53
Uy micro
9 + 12

=<

d) k=214 — U=2.14x0.001067mm = 0.00228 mm = 0.002 mm

5.11.7

(@) 0.070711 g

(b)0g
(©) 0.3 g, k = 2.10 for 95.45 %

5.11.8 The expanded uncertainty was declared with more than two significant digits,
and this is not allowed according to ILAC-P14:09/2020. Uncertainty should have
been declared as 0.024 g/ml.

5.11.9

(a) Mean = 80.6 °C = 80.5 °C (the thermometer resolution is 0.5 °C)
(b) Urepeat = ﬁ — 0.41833 —0.1871°C

V5
(€) Uthermo = % = 20—867 =0.2091°C
(d) Ue= u%epeat + utzhermo =0.2805°C
(e) Degree of freedom
(f) k factor

4
Veff = 02805 =79—k=243
0.1871% | 02091
4 4

(g) U=12.43x0.2805°C =0.7°C
(h) The greatest source of uncertainty is the uncertainty of bimetallic thermom-
eter measurement.
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5.11.10

(@) Foomected =X — B = 100.0035 — (— 0.0050) = 100.0085 g
(b) tgepear = 0.000176383 g

(©) tte = \ /12 oy + e = V/0.0001763832 + 0.0004% = 0.000437163 g

=75,5—-k=2.03—-U=2.03x0.000437163 g=0.0009 g

Veff =

Nlii* | n:-l;

5.11.11

(2) Xeorrected =X — B=12.005 — 0.0015=11.9990 g

(b) trepear = 0.00006667 g

() c)B=0.0015¢g

(d) u.= \/ufepea[ +ul .= \/0.000066672 +0.00014218% =0.000157034 g

4

Veft A
ZA scale
2 25
5.11.12 (¢)
Chapter 6
6.6.1

M=(1000+1) g k=2.00 and 9545 %. uy=1g/2=05 g
D=(8.000+0.002) cm k=2.00 and 95.45%. up=0.002 cm/2=0.001 cm
M_ M _ 6X1000 _yo0y s

V  aD?  3.1416x 83

()

2 2
o= (Go) + (3)
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2 2
6 —18M
u, = \/ (MMM> + ( — uD> =0.00233 g/cm’

U=k. u,,—2><000233 —OOOSg/cm

(b)

+ ()

Uy 2
=\ (i)

2 2
u,,=3.730\/ (%) + (%) —0.00233 g/cm?

U=k. up—2X000233 —OOOSg/cm

6.6.2 The result of mode 2 was different, because the L1 and L2 variables are
statistically dependent. Thus, measurement uncertainty should consider the cor-
relation coefficient (r) between the variables.

0A 0A 0A\ ([ 0A

r(L1,L2)=1; L1=12=L — up=upp=u.

Up = \/L22u1%1 + L12ML2 + 2.L1. L2uL1uL2
4L2u% =2Lu;,

6.6.3
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2 3ug\?
(urel density) = (urel mass)2 + (7(1)

2

3u
(0.012)> = (0.01)* + (1'06’0)

us=0.002 cm=0.2%

6.6.4

(a) 0.1 cm

(b) 0.1/3 =0.033

(©) 333 %

(d) 3/200 = 0.015 cm

(e) 3.33%, the same as the book

6.6.5

@@L = 100 £ 01) cm, W = (5.0 = 0.1) cm, H = (2.0 = 0.1) cm,
M = (50.0 + 0.1) g. All uncertainties are declared with k = 2.00 and 95.45 %.

_m_ m 50
P=V = IWH 1052

0.50 g/cm’

(b)

=y (22) () () ()
up:0.50\/(%>2 + <%>2 + (g)z + (g)z =0.0137 g/cm’

U=2x0.0137=0.03g/cm’

(c) The variable that has the highest relative uncertainty is the height variable of
block H.

2
u, =0.50 (%) =0.0125 g/cm’

U=2x0.0125=0.02g/cm’

Note that variable H preponderantly influences the wooden block density mea-
surement uncertainty. Thus, to reduce the final uncertainty of the specific mass, we
must improve the measurement of this H variable.
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6.6.6

d = (1.00 + 0.01) cm, with k = 2.00 and 95.45 %
(@) V=1L =0.524 cm’

() 0.01/1 x 100 % = 1 %

(©)
2
uy = %ud: %ud =0.0079 cm® - U =2x0.0079=0.016 g/cm®
uy = v.% —0.524 x 0'0115 =0.0079 — U=0.016 g/cm’
6.6.7
e 1 @)
27vLC 2r
w\? _ (—u1/2 2+ —uc.1/2\°
7 L C
2 2 2
w\"_( 1 1 _
(f> - ( ; xo.os) ¥ ( ; xo.z) —0.010625
?:0.0103—>u%f= 10.3%
6.6.8

y=(1.000+£0.001)m; k=2.43 and 95.45%
t=(0.45+0.01)s; k=2.23 and 95.45%
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2 2
ug=9.9 \/<70‘0011/2'43> + <_—2X 8'%/2'23) =0.197 m/s?

y: k=243 — v=7 u,=0.001/2.43=0.000411m
t:k=223 - v=12 u,=0.01/2.23=0.0045s

0.19%_9)4

e (2 4 (28 = 190,35 — k=201

U=2.01x0.197=0.4 m/s>

(e) It is possible to neglect the uncertainty of height y (0.1%), since its relative
uncertainty is minimal compared to the relative uncertainty of time t (2.2%).

B ~2x0.01/2.23\* )
g =9.9 \/(T) =0.197 m/s

6.6.9

R=(10.0£0.1) Q, k=243 and 95.45%
I=(10.0+0.1) A, k=2.23and 95.45%
V=(100+1) V, k=2.2land 95.45%
uR=0.1/2.43=0.04115 v=7
ul =0.1/2.23=0.04484 v=12
uV=1/221=04525 v=13

(@) P=V.I=1000W = 1.00 kW
2 2
up—P (“VV) n (?) — 63705 W

(%)’

L =24.98 > k=2.11
)13+ ()12
U=2.11x6.3705=13.44W = 0.01 kW

Veff

(b) P=R.JI>=1000W = 1.00 kW
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up—P (%R)z n (2%)2 —9.868W

up\4
— (F)M — = 12698 —k=2.02
(%)/7+(7) /12
U=2.02x9.868 =19.99W = 0.02kW

Vo=

() P=V*R=1000W = 1.00 kW

up=P 1/ (%R)Z + (2”%)2:9.942w

up\4
— (”)u —— =13341 k=202
(%)/7+(v)/13
U=2.02x9.942 =20.07W =0.02kW

Ve =

Conclusion: The letter (a) is the measurement method that provides the lowest
uncertainty for electric power. Its value is half of the uncertainty provided by
alternatives (b) and (c).

6.6.10

M;=(128.0+02) g
M,=(564+04) g
M3;=(39.7+0.7) g
M4=M1+M2-M3=1447¢
wun=U/k=02/2=0.1¢g
up=U/k=04/2=0.2¢g
w3 =U/k=0.7/2=0.35g

sy = \/18y, + 1y, + 1y, =V 0.1> +0.22 + 0.352 = 0.42¢

U=2x042=0.8¢g

6.6.11

Liters = V= 80.8 L
Distance = S = 834.5 km
C=S5/V=10.3 km/L
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ug\ 2 uy\ 2
we=C\[(§) + () w=yu
us\? | (uy\? us\2 | (uy, +uj,
ue=C\/ () + (3) =py/ (%) + —0.02106km/L

V2
U=2 x 0.02106 =0.042km/L

C=(103+42 x 107%) km/L

6.6.12
(a) 72.467 mm = 50 mm + 20 mm + 1.46 mm + 1.007 mm
(b)

U72-467 mm — \/Ugo mm + U%O mm + U%.46 mm + U%.007 mm
uVl = 0,1 L
uVv2= 0,05 L
uS = 1,25 km

Ur.467 mm = /0.00042 + 0.00032 + 0.00022 + 0.0002% = 0.0006 mm = 0.6 um

6.6.13

(@ V=2000V i=199A

Voltmeter Ammeter

Bias (V) +0.1 Bias (A) —0.04
Uncertainty (V) 0.2 Uncertainty (A) 0.02
(k = 2.00; 95.45%) (k = 2.00; 95.45%)

Ver =199V i, =2.03 A

VCOF

R=Yer _9g30
Leor

bB)B=R—Ryon =983-100= — 1.7 Q

c)C= —-—B=17 Q

(d)
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22 2 2 2 2
Uy = Uyy + Upy Ui = Uy; + up;

e :R\/uiv gy Wt U g \/0.0352 +0.12 | 0.0038% +0.017

V2 2 199.92
=0.52Q
uy =10.035% +0.12=0.106 V

u;=1/0.0038% +0.012=0.0107 A

2.032

()’
)
1‘//\/ + :/i
uy  0.106*
VWAl T oo =673
< 8
4 4
u!t 00107t
ViT Ak T 00038 503
3 8
()" (62°
BRI = 8 =510k =2.00

U=2.00 x 0.52=1.04 Q
R=(983+1.0) Q k=2.00

Voltage (V) Electric current (A)
199.9 1.99
200.2 2.02
200.1 1.98
199.9 1.99
199.9 1.99
200.0 2.00
200.0 2.00
199.9 1.99
200.0 1.99
s(V); (i) 0.105 0.0011
uA(V); uA@i) 0.105/3 = 0.035 0.0011/3 = 0.0038
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Chapter 7

7.8.1
()

200
180
160 PR
140 Pt 4
120 oY
100 @
80
60
40
20

y =-5.7749E-05x? + 3.9085E-01x + 9.9998E+01
R? = 1.0000E+00

0 50 100 150 200 250

R(t)=R(0) [1 +At+B ] =99.998 (1 +3.91E-3+-5.78E-7 1*)

(b)
(x) Temp. Std. (°C) (»Q RO Q =R
0.00 99.99 99.9980 6.4E-05
25.00 109.74 109.7332 4.6828E-05
50.00 119.40 119.3961 1.4996E-05
75.00 128.99 128.9869 9.5365E-06
100.00 138.50 138.5055 3.036E-05
125.00 147.95 147.9519 3.6936E-06
150.00 157.32 157.3261 3.7792E-05
175.00 166.63 166.6282 3.2874E-06
200.00 175.86 175.8580 3.8416E-06
b 0.000214336
g 0.005977

(©) % =RO (A+2Br) & =99.998 (391 x 1077 -2 x 578 x 107"t) <&




306 Proposed Exercises—Answers and Solutions

1=200°C — aa—f —99.998 (3.91x 107> —2x 5.78 x 10~ x 200) QC
=0.36775%
U c = ”g;;‘af’ — 0_2'607175 °C=0.02719°C
Upath = % —0.0155°C
g = 0.01°C

Ucomb = v/0.005977% + 0.027192 + 0.0155% + 0.012°C =0.0318°C
U=kucomp=2 * 0.0318°C=0.06°C

7.8.2
(a)
Scale (kg) Uiype A = ~=
0.2 0.3 0.3 0.0333
10.2 10.4 10.4 0.0667
14.9 14.9 14.7 0.0667
20.2 20.0 20.3 0.0882
(b)
Utype A Uresol Umass Ucomb Veff k U (kg)
0.0333333 0.028868 0.009569 0.045122 6.7 2.5 0.1
0.0666667 0.028868 0.009569 0.073276 2.9 4.5 0.3
0.0666667 0.028868 0.009569 0.073276 2.9 4.5 0.3
0.0881917 0.028868 0.009569 0.093288 2.5 4.5 0.4
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()
Scale calibration graph
25
20 .
157 T O ALl
S R R R (W
- 15 L
: e
S0 .
S5 e y = 1.011395x - 0.279908
L R?=10.999451
A e
0 e
0 5 10 15 20 25
-5
Scale lecture (kg)

Scale (mean) Std mass fix) [y—f)1?
0.3 0 —0.0101933 0.000104

10.3 10 10.1712333 0.029321

14.8 15 14.7225333 0.076988

20.2 20 20.1166667 0.013611

z 0.120024
Uit 0.244973
usy = 0.244973 kg
(d)

Scale (kg) Fitting eq. (kg) Bias (kg) Ucomb (k) Deff k U (kg)
1.0 0.7 0.3 0.2621 2.84 4.5 1.2
2.0 1.7 0.3
3.0 2.8 0.2
4.0 3.8 0.2
5.0 4.8 0.2
6.0 5.8 0.2
7.0 6.8 0.2
8.0 7.8 0.2
9.0 8.8 0.2

10.0 9.8 0.2

11.0 10.8 0.2

12.0 11.9 0.1

13.0 12.9 0.1

(continued)
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(continued)
Scale (kg) Fitting eq. (kg) Bias (kg) Ucomp (kg) Veff k U (kg)
14.0 13.9 0.1
15.0 14.9 0.1
16.0 15.9 0.1
17.0 16.9 0.1
18.0 17.9 0.1
19.0 18.9 0.1
20.0 19.9 0.1
7.8.3

UgLr=0.2 °C

Up=1/U% 1 + Ulys < 1.025 ULt

Ugir + Usns < 1.050625 UG, 1 — Ugys <0.050625 Ug, 1 <0.002025° C
Usvs £0.045 °C

7.8.4
Measurements Standard (°C)* Object (°C)
1 10.1 10.5
10.1 10.5
10.1 10.0
2 19.8 19.5
19.8 19.5
19.8 19.5
3 50.1 50.0
50.1 50.0
50.1 50.0

“Values are corrected by the bias found in the calibration certificate

(a)

Measurements u Type A std (°C) u Type A object (°C)
1 0 0.1667

2 0 0

3 0 0

(b) than = 2255€ =0.04619°C

(©) Upes = Ojl"_zc =0.14434°C
(d)
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Standard (°C) Object (°C) Bias (°C)
10.1 10.5% 04
19.8 19.5 —-0.3
50.1 50.0 —0.1
“The mean object is 10.33 °C, but its resolution is 0.5 °C. We should round to 10.5 °C
(e
Object (x) Standard (y)
10.5 10.1
10.5 10.1
10.0 10.1
19.5 19.8
19.5 19.8
19.5 19.8
50.0 50.1
50.0 50.1
50.0 50.1
60
— 50 y =1.0046 x - 0.0662
2 —
g 40 R?=0.9997
<
?g_ 30
§ 20 . o
2 10
<
= 0
A 20 40 60
Object Temperature (°C)
®
Object Std ) [y—fol?
10.5 10.1 10.4821 0.14600041
10.5 10.1 10.4821 0.14600041
10.0 10.1 9.9798 0.01444804
19.5 19.8 19.5235 0.07645225
19.5 19.8 19.5235 0.07645225
19.5 19.8 19.5235 0.07645225
50.0 50.1 50.1638 0.00407044
50.0 50.1 50.1638 0.00407044
50.0 50.1 50.1638 0.00407044
z 0.54801693
Ui 0.279800166

(€3]
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7.8.5
(a)

Object Standard (bar) Hysteresis
bar Charge 1 Discharge 1 Charge 2 Discharge 2 bar

6.0 6.4 6.5 6.4 6.5 0.10

10.0 10.5 10.4 10.5 10.4 0.10

24.0 24.3 242 24.3 24.2 0.10

30.0 30.3 30.4 30.3 304 0.10

40.0 40.5 40.4 40.5 40.4 0.10

(b)

Object Standard (bar)

bar Charge 1 Discharge 1 Charge 2 | Discharge 2 Error (bar) | Error (%)
6.0 6.4 6.5 6.4 6.5 —0.5 1.25%
10.0 10.5 10.4 10.5 10.4 -0.5 1.25%
24.0 243 24.2 24.3 24.2 —-0.3 0.75%
30.0 30.3 30.4 30.3 304 —-0.4 1.00%
40.0 40.5 40.4 40.5 40.4 —0.5 1.25%

©
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(d)
45
40 y =0.998485x + 0.423333 e
535 R2 = 0.999946
L
o 30 @
§D 25 '
= 20
s
< 15
% ."'
&= 10
5
0
0 10 20 30 40
Object gauge (bar)
©
Obj Std ) y—fx)%]
6.0 6.45 6.414243 0.001279
10.0 10.45 10.40818 0.001749
24.0 24.25 24.38697 0.018762
30.0 30.35 30.37788 0.000777
40.0 40.45 40.36273 0.007616
z 0.030182
Ufit 0.100303 bar
®
7.8.6
(@) (b)
Object Standard® (mV)
(mV) Vi1 V2 V3 V4 Error (mV) Error (%)
40.00 40.110 40.150 40.160 40.120 —0.16 0.08
80.00 80.117 80.157 80.137 80.127 —0.16 0.08
120.00 120.146 120.166 120.186 120.186 —0.19 0.09
160.00 160.225 160.175 160.165 160.175 —0.22 0.11
200.00 200.205 200.225 200.255 200.265 —0.27 0.13

“Values are corrected by the bias found in the calibration certificate
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()
0
Object | Standard (mV) u u u u u eff |k U
Type | Obj
(mV) |Vl V2 V3 V4 A resol std | parasite | comb mV
40.00 | 40.110 | 40.150 |40.160 |40.120 | 0.0119| 0.00289|0.001| 0.00115| 0.01234| 3.5 | 3.31| 0.04
80.00 |80.117 | 80.157 |80.137 | 80.127 |0.0085| 0.00289 | 0.001| 0.00115| 0.00914| 3.9 | 3.31| 0.03
120.00| 120.146| 120.166| 120.186| 120.186| 0.0096| 0.00289 | 0.001| 0.00115| 0.01012| 3.7 | 3.31| 0.03
160.00| 160.225| 160.175| 160.165| 160.175| 0.0135| 0.00289 | 0.001| 0.00115| 0.01393| 3.4 | 3.31| 0.05
200.00| 200.205| 200.225| 200.255| 200.265| 0.0138| 0.00289 | 0.001| 0.00115| 0.01415| 3.3 | 3.31| 0.05
(@)
250
200 y=1.000639x + 0.095950 @
R2=1.000000
> o
E 150 :
T -
[ .0’
© o
E 100 .
Z Lo
50
[ 4
0
0 50 100 150 200 250
Object (mV)
(©)
Object Standard &) —f0
40.00 40.135 40.11990 0.00023
80.00 80.135 80.14390 8.8E—05
120.00 120.171 120.16790 9.6E—06
160.00 160.185 160.19190 4.8E—05
200.00 200.238 200.21590 0.00047
z 0.00084
u fitting 0.01673 mV




Proposed Exercises—Answers and Solutions

315

®
Object | Std u u u u u u U
bar bar Type A | Obj. resol | Std. resol |std |fitting |comb |ves |k bar
6.0 6.45 |0.0289 |0.102 0.0289 0.05 |0.1003 |0.157 |18 |2.16 |03
10.0 10.45 |0.0289 |0.102 0.0289 0.05 |0.1003 |0.157 |18 |2.16 |03
24.0 24.25 |0.0289 |0.102 0.0289 0.05 |0.1003 |0.157 |18 |2.16 |0.3
30.0 30.35 |0.0289 |0.102 0.0289 0.05 |0.1003 |0.157 |18 |2.16 |0.3
40.0 40.45 |0.0289 |0.102 0.0289 0.05 |0.1003 |0.157 |18 |2.16 |0.3
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Chapter 8

8.9.1. (b)
8.9.2. (a)
8.9.3.y =910 bar

T; =900 bar U=10 bar — u=35 bar

P. :(p(y _uTL) - (p(910 - 900) = (2) =0.9772 - 97.72%

Ty=34.0 °C T,=30 °C u(y)=0.5 °C

340?534> - (30(;534) =¢(0) —p(—16)=0.5-0

y=34 °C P,—¢ (
—0.5 (50%)

y=32 °C Pc=§0(34_32) _¢(30—32

05 05 ):¢(4)_"’(_4):1_0
— 1 (100%)

y=33 °C Pc:§0(34_33>* (30—33)

0% 05 ) =0(2) —#(-6)=09772-0

=0.9772 (97.72%)

8.9.5. (¢)
89.6. Ty =500 mglkg U=4 mg —» u=2mg P=099

P= 40(y—_uTU) =9 (yi—zsoo = z) —0.99 > 7=2.33

2.33= (ﬂ) — y=504,66 =~ 505 mg /kg
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8.9.7. (d)
8.9.8.
P:qJ(TL,;y) Zqo(% =z> =0.999 —z=3.08
3.08= (7135_)’> —y=707 kg/m’
8.9.9.

(@ @®3x£3)°C
(b) TUR=TL/U — U=TLTUR=3 °C3=1 °C

8.9.10.

(@ T, =440 °Cand Ty =50.0 °C
(b) TOR=TL/IU=5 — U=TLTUR=3 °C/5=06 °C

w=15U=09 °C - A, =T, +w=449 °C and Ay=Ty —w
=49.1 °C

Chapter 9

9.5.1

(R) | The calibration certificate is a technical record that enables the user to measure instrument
conformity assessment

(W) | The laboratory that performs the measuring instrument calibration will never make any
recommendation on the periodicity of calibration

(R) | The calibration laboratory does not usually adjust the measurement instrument; however,
results should be reported before and after adjustment if this is done

(R) | The certificate must present calibration results in the units of measure used and declare the
measurement uncertainty, scope factor, and confidence level used

(W) | The environmental conditions of the calibration site only need to be declared, if they affect
the calibration result
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952
Standard (bar)
Object (bar) |Charge 1 |Discharge 1 |Charge 2 | Discharge 2 | Error (bar) | Error (%)
5.0 5.00 5.20 5.25 5.25 0.25 0.42
15.0 15.25 15.55 15.00 15.50 0.55 0.92
25.0 25.00 25.55 25.50 25.55 0.55 0.92
35.0 35.25 35.00 35.50 35.25 0.50 0.83
45.0 44.55 45.05 45.00 45.50 0.55 0.92
55.0 56.00 56.00 55.55 55.50 1.00 1.67
60.0 60.00 60.00 60.00 60.00 0.00 0

Class 1.0 — MPE = 1.0 %. The 55.0 bar error was 1.67 %, higher than the MPE.
Therefore, the gauge does not meet class 1.0.

953

» Unique identification that all components are recognized as part of a complete
report and an identification to the end of the document.

» Presentation of the method used in calibration.

* Date of calibration.

» Declaration that the results apply only to the calibrated instrument.

* Declaration that the certificate should only be reproduced completely.

9.54
Table 9.9 Burettes (ASTM E287)

MPE (mL) +

Capacity (mL) Class A Class B
10 0.02 0.04
25 0.03 0.06
50 0.05 0.10

100 0.10 0.20

V=25.05mL — Error=(25.05-25) mL=0.05 mL < Class B error
=0.10 (OK)

U=0.01 mL
Unaximum = E + U = (0.05 + 0.01) mL=0.06 mL<AC=0.1 mL (OK)

9.5.5 We know that for a 95 % decision rule (ISO 14253-1:2017), we must use a
guard band w = 0.83 Uppaximum
Width: A; = T; + Upaximum = (24.988 + 0.00166) mm = 24.990 mm
Ay =Ty — Upnaximum = (25.012 — 0.00166) mm =25.010 mm

Diameter: AL = T; + Upaximum = (958.5 + 0.415) mm = 958.9 mm
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Ay =Ty — Upnaximum = (961.5 — 0.415) mm=961.1 mm

9.5.6 According to Table 8.11, for a false positive of less than 2.5%, we must adopt a
w guard band equal to AC.

Ap=Tr 4 Upnaximum = (14.95 + 0.017) mm=14.97 mm

Ay =Ty — Upaximum = (15.05 —0.017) mm = 15.03 mm

9.5.7 (b)
9.5.8 (a)
9.5.9 (b)
9.5.10 (c)
9.5.11 (a)
9.5.12 (b)
9.5.13 (c)
9.5.14 (b)
9.5.15 (b)
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